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1. Introduction

1.1. Motivation

Work package 3 (WP3) aims at proposing new technologies for applications related to
heterogeneous camera networks where camera mobility plays a key role. Such proposals will be
performed on public datasets. If required, small scenarios will be recorded.

This deliverable describes the work related with tasks T.3.1 Scene Recognition, T3.2
Semantic Segmentation, T3.3 Multi-view matching and T.3.4 Cooperative detection and

tracking

1.2. Document structure

This document contains the following chapters:
e Chapter 1: Introduction to this document

o Chapter 2: Scene Recognition

e Chapter 3: Semantic Segmentation

e Chapter 4: Multi-view matching

e Chapter 5: Cooperative detection and tracking

e Chapter 6: Conclusions

D3.v2 Technologies for Mobile Camera Networks 1
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2. Scene Recognition

2.1. Semantic-Aware Scene Recognition Approach [1]

2.1.1. Design

Scene recognition is currently one of the top-challenging research fields in computer vision.
This may be due to the ambiguity between classes: images of several scene classes may share
similar objects, which causes confusion among them. The problem is aggravated when images
of a scene class are notably different. Convolutional Neural Networks (CNNSs) have significantly
boosted performance in scene recognition, albeit it is still far below from other recognition tasks
(e.g., object or image recognition). In this paper, we describe a novel approach for scene
recognition based on an end-to-end multi-modal CNN that combines image and context
information by means of an attention module. Context information, in the shape of a semantic
segmentation, is used to gate features extracted from the RGB image by leveraging on
information encoded in the semantic representation: the set of scene objects and stuff, and their
relative locations. This gating process reinforces the learning of indicative scene content and
enhances scene disambiguation by refocusing the receptive fields of the CNN towards them.
Experimental results on four publicly available datasets show that the proposed approach
outperforms every other state-of-the-art method while significantly reducing the number of

network parameters.

2.1.1. Experimental results

The proposed solution is validated by an extensive comparison with the state-of-the art
using four publicly available datasets described in [2]. The following Tables illustrate this

comparison. A brief discussion is included for each dataset. See full details in [1].

Results on the ADE20K Dataset from Table 1 indicate the effectiveness of the proposed
architecture when compared to the solely use of either the RGB features or the Semantic
features. When using both RGB and Semantic features, increments of a 9.9% and a 29.80% in
terms of Top@1 accuracy and Mean Class Accuracy are obtained whit respect to the RGB

baseline.

Results from Table 2 and Table 3 indicate that the proposed method outperforms every other

scene recognition state-of-the-art algorithm. Specifically, the proposed algorithm using ResNet-

D3.v2 Technologies for Mobile Camera Networks 3
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50 as backbone (Ours*) outperforms SDO [4], an algorithm similar in spirit, in a 0.39% and a
0.85% for MIT Indoor 67 [5] and SUN 397 [6] respectively.

RGE Semantic Top@l Top@2 TopSd MMCA

v 5.90 67.25 TE.00 201.80
W 560 Gl.45 72,10 12,17
W v 62.55 T3.25 H2.75H 27.00

Table 1. Scene recognition results on ADE20K

Number of B
Method Backbone Top@l

Parameters

PlaceNet Places-CNN ~ 62 M 68.24
MOP-CNN CaffeNet ~ 62 M 68.90
CNNaug-SVM OverFeat ~ 145 M 69.00
HybridNet Places-CNN ~ 62 M 70.80
URDL + CNNaug AlexNet ~62M 71.90
MPP-FCR2 (7 scales) AlexNet ~ 62 M T5.67
DSFL + CNN AlexNet ~ 62 M 76.23
MPP + DSFL AlexNet ~ 62 M 80.78
CFV VGG-19 ~ 143 M 51.00
Cs VGG-19 ~ 143 M 82.24
SDO (1 scale) 2xVGG-19 ~ 276 M 83.098
VSAD 2xVGG-19 ~ 276 M 86.20
SDO (9 scales) 2xVGG-19 ~ 276 M 86.76
RGB Branch ResNet-18 ~ 12 M 82.68
RGE Branch* ResNet-50 ~ 25 M 84.40
Semantic Branch 4 Conv ~ 2.6 M 73.43
Ours RGEB Branch + Sem Branch + G-RGB-H ~ 47T M 85.58
Qurs* RGB Branch* 4+ Sem Branch 4+ G-RGB-H ~ 85 M 87.10

Table 2. State-of-the-art results on MIT Indoor 67 dataset. Methods using objects to drive scene
recognition include: [13, 14], Semantic Branch, Ours and Ours*.

Results from Table 4 compare the proposed algorithm with respect to state-of-the-art
Convolutional Neural Networks on Places Dataset [7]. “Ours” obtains the best results from the

table while maintaining relatively low complexity. Its performance improves those of the

D3.v2 Technologies for Mobile Camera Networks 4
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deepest network, DenseNet-161, by a 0.73% in terms of Top@1 accuracy and it surpasses the
most complex network, VGG-19, by a 2.29% reducing the number of parameters a 67.13%.

Number of
Method Backbone Top©l

Parameters

Decaf AlexNet ~ 62 M 40.94
MOP-CNN CaffeNet ~ 62 M 51.98
HybridNet Places-CNN ~ 62 M 53.86
Places-CNN Places-CNN ~ 62 M 54.23
Places-CNN ft Places-CNN ~ 62 M 56.20
(8] VGG-19 ~ 143 M 64.53
SDO (1 scale) 2% VGG-19 ~ 276 M 66.08
VSAD 2xVGG-19 ~ 276 M T3.00
SDO (9 scales) 2xVGG-19 ~ 276 M 73.41
RGB Branch ResNet-18 ~ 12 M 67.65
RGB Branch® ResNet-50 ~ 25 M TO.87
Semantic Branch 4 Conv ~ 2.6 M 51.32
Ours RGB Branch + Sem Branch + G-RGB-H ~ 47 M 71.25
Ours¥* RGB Branch* + Sem Branch + G-RGB-H ~ 856 M 74.04

Table 3. State-of-the-art results on SUN 397 dataset. Methods using objects to drive scene recognition
include: [13, 14], Semantic Branch, Ours and Ours*.

D3.v2 Technologies for Mobile Camera Networks 5
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UJ 4‘ Universidad Auténoma
Y de Madrid

Number of

Network Top@l Top@2 Top@5 MCA
Parameters
AlexNet ~ 62 M 47.45 62.33 78.39 49.15
AlexNet * ~ 62 M 53.17 - 82.89 -
GoogLeNet* ~7M 53.63 . 83.88 .
ResNet-18 ~ 12 M 53.05 68.87 83.86 54.40
ResNet-50 ~ 25 M 05.47 70.40 85.36 55.47
ResNet-50 " ~ 25 M 54.74 - 85.08 :
VGG-19 * ~ 143 M 05.24 - 84.91 -
DenseNet-161 ~ 29 M 56.12 71.48 86.12 56.12
Semantic Branch ~ 2.6 M 36.20 50.11 68.48 36.20
Ours ~ 47T M 56.51 71.57 86.00 56.51

Table 4. State-of-the-art results on Places-365 Dataset (%). (* stands for performance metrics reported in
the dataset).

D3.v2 Technologies for Mobile Camera Networks 6
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U X Universidad Auténoma
Vi de Madrid

RGB Branch (ResNet-18) Semantic Branch Ours Cliss
Class Activation Map Class Activation Map Activation Map

RGB limage Semantic Segnwnation

Figure 1. Qualitative results.

First and second column represent the RGB and semantic segmentation images from the
ADE20K, the SUN 397 and the Places 365 validation sets. The third, fourth and fifth columns
depict the Class Activation Map (CAM) obtained by using features extracted from: the RGB
Branch used baseline (ResNet-18), the Semantic Branch and the proposed method (Ours). The
CAM represents the image areas that produce a greater activation of the network. CAM images
also indicate the ground-truth label and the Top 3 predictions. It can be observed how the
proposed method changes the attention towards human-accountable concepts that can be
indicative of the scene class, e.g., the microwave for the kitchen, the animals for the chicken
farm or the mirror for the bathroom.

D3.v2 Technologies for Mobile Camera Networks 7
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2.2. Egocentric Scene Recognition combining depth,
color and semantic information [71]

2.2.1. Design

A system for RGB-D scene recognition is designed. We show that using depth maps can
further improve the results, since the depth possesses additional cues, not very likely to be learnt
from colour data. We define a two-stage learning architecture consisting of three branches—
colour, depth and semantic, fused in the end using attention mechanisms. Each branch is firstly
maximized in terms of precision on its own. In this case, we show that the proper encoding is
crucial for the depth branch and that HHA (Horizontal disparity, Height, Angle) representation
leads to the best results. Moreover, we show that proper pre-training makes a great difference
when fine-tuning to small datasets. After all branches have been optimized, weights inside them
are frozen and different attention modules are trained and evaluated. In the end, using Hadamard
combination proved to be the most prolific. Finally, we reached performances comparable to the
current state of the art methods, resulting in a 60.0% Top@1 precision in the SUN RGB-D
dataset. We also provide an extensive quantitative and qualitative evaluation of our model.

2.2.2. Experimental results

The proposed solution is validated by an extensive comparison with the state-of-the art
using the SUN RGB-D dataset [72]. The following Figures and Tables illustrate this
comparison. We here include results for the fusion mechanisms when the complete architecture
(three branches is used). See full details, including ablation studies and experiments on the effect

of the hyperparameters in [71].

Fusion

Fusion between branches is achieved using different attention modules. As aforementioned,
all three branches are firstly pretrained separately. Afterwards, their weights are frozen, and the
classifiers are discarded from the branches. Two convolutional blocks are appended to each of
the branches, in order to extract features relevant for fusion. In the end, fusion is realized as

either an element-wise function or a feature concatenation.

Extensive study on the impact of attention mechanisms on results is presented in Table 5. In
order to better understand the results that attention mechanisms achieve, the results of two
branch architectures are also presented. Fusing colour and semantic branches is carried out by
using Gated RGB Hadamard Combination, as noted in [1], while fusion of colour and depth and

depth and semantic information is done using Hadamard Combination. The results show that all

D3.v2 Technologies for Mobile Camera Networks 8
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attention mechanisms manage to improve on the Top@1 results achieved by colour baseline.
Yet, not all of them manage to improve on the baseline set by the Semantic-Aware Scene
Parsing Network [1], combining RGB and semantic information.

In the end, the best result was achieved when Hadamard Combination attention mechanism
was used. Hadamard Combination mechanism computes element-wise product between the
features extracted from all-three branches and feeds it further. Even though it managed to
improve on Top@1 result, colour baseline remained having better scores on Top@5 and
Top@10 metrics.

I Attention Mechanism Top@l Top@5 Top@ll
Color Baseline | 57.63 89.00 96.35
Single branch ~ Depth Baseline 47.04  80.03 92.82
Semantic Baseline 47.89  82.96 94.93
Color + Depth Baseline 58.81  85.27 95.50
Two branches  Color + Semantic Baseline 59.29 R7.7 96.02
Depth + Semantic Baseline 52.56  86.32 95.82
Additive Combination 59.74  87.38 94.76
Three branches (Gated RGB Hadamard Combination | 59.01  87.7 95.86
Hadamard Combination 59.98 88.88 95.66
Concatenation 59.09 858.03 96.02

Table 5. Comparison of proposed attention mechanisms in terms of accuracy on SUN
RGB-D dataset

Comparison against the State-of-the-art

By obtaining 60.0% accuracy, our network surpassed the previous state of the art in the task of
RGB-D Scene recognition on SUN RGB-D dataset. The comparison between the previous

proposals and our results is shown in Table 6.

Attention Mechanism | RGB Depth Combined
RGB-D-CNN [70] 42,7 424 52.4
DF2Net [73] - - 54.6
RGB-D-OB [61] - 42.4 53.8
G-L-SOOR [72] 50.5  44.1 59.5
CBSC [T1] 45.5  36.2 57.8
Qurs | B87.7  47.0 60.0

D3.v2 Technologies for Mobile Camera Networks 9
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Table 6. Comparison of proposed architecture with the state of the art approachesin terms
of accuracy on SUN RGB-D dataset

Per-class improvement.

The bar plot representing the per-class percentage Top@1 improvement obtained by
incorporating additional branches to the colour baseline model is shown in Figure 2. It can be
noticed that in 11 classes incorporating depth and semantic branches resulted in higher precision
rate, while the results decreased for only 4 classes. The highest improvement occurs in corridor
class. The explanation for this comes from the fact that corridors contain a very specific depth
pattern. In contrary to the other rooms, that most often have square shape, corridors are usually
very narrow and long. Hence, having an information about a long and continuous patch of in-
creasing depth helps the network to classify it as a corridor. Three examples in which using
additional branches helped to produce better predictions in corridor images are presented in

Figure 3.

15

10

=10
-15

=20

lab
library

carridor

bedroom
kitchen

classroom

bathroom
CompUter_room
conference_room
dining_area
dining_room
discussion_area
furniture_store
hame_office
lecture_theatre
living_roam
office
rest_space
study_space

Figure 2. Per-class percentage Top@1 improvement by incorporating depth and semantic information.

D3.v2 Technologies for Mobile Camera Networks 10



Video Processing
I and Understanding Universidad Autonoma
Lab

de Madrid

corridor

corridor

. RGB retwork Multimodal network

RGE network Mukimodal network RG3 netwark Multincdal netword

Top-1: kitchen Tap-1: confidor Top 1. dining_roem  Tcp-l: corridor L Top-1: rest_spaos Top-1: convidor
Top-2: dning_room  Top-2: dasscoom Top - kitzhen Tep-2:offce ! Top-2: corridor Top-2: rest_space
Tep-3: living_room  Top-3: bedroom Top-3: iving_rocem Tep-3: bedraom ¢ Top-3: tlassroom Top-3: classrcom
Top-4: corridor lop-4: lving_rcom Top-4- bedreom Tep-a: living_raom Top-4: discussion_area Top-4: bedrocom
Top S: bedroom Top-5: kitchen Top-5: home_ot'ize Tep'S: hore_office . Top-5: lacture_theatre Top-5: lving_rcom

Figure 3. Examples showing the improvement made in images of corridors by incorporating depth and
semantic information

2.3. Image classification through reduced training sets
and “few-shot” learning [99]

2.3.1. Design

Conventional training of deep convolutional neural networks typically relies on the
availability of millions of labelled images. Having access to such huge image repositories is not
realistic for many applications in which reduced datasets are only available for training. “Few-

shot” learning aims at training deep neural networks with reduced training sets.

This work has analysed both the “one-shot” (one training image per class) and “few-shot”
(few training images per class) learning paradigms by implementing and evaluating the “relation
network”, a deep neural network described in [100] (CVPR 2018). This network allows the
supervised classification of images through reduced training sets. The network consists of two
convolutional modules shown in the next figure for the “one-shot” instance and considering the

particular example of 5 classes (5 ways):

D3.v2 Technologies for Mobile Camera Networks 11
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embedding module relation module

Feature maps concatenation

Relation One-hot
score vector

fo 9¢ ™

The “embedding module” extracts a feature vector from an input image. In the previous
example, it is applied to 6 images: the test image (bottom right) and the single training image
(one shot) associated with each of the 5 classes (left column). The feature vector corresponding
to each training image is concatenated with the feature vector obtained for the test image. The
subsequent “relation module” generates a numerical score for each pair of feature vectors that
amounts for the similarity between them. The test image is classified as belonging to the class
with the largest similarity score. In “N-shot” learning, the feature vectors corresponding to the N
training images per class are simply added and the result concatenated to the feature vector of
the test image.

2.3.2. Experimental results

The aforementioned relation network has been implemented and tested on the particular
problem of classifying images of both the public dataset minilmageNet used in [100] and of a
proprietary dataset with outdoor images of buildings from the UAM campus. In both cases we
have considered 5 classes (5 ways) and 20 images per class: either 1 or 5 images for training
(sample images) and the others for testing (query images). For example, the figure below shows
an example of the 20 images considered for one of the classes of the UAM dataset in the 5-shot

experiment: the 5 images in the first row were used for training and the other 15 for testing:

D3.v2 Technologies for Mobile Camera Networks 12
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Muestra 1 Muestra 2 Muestn 3 Muestra 4 Muestra 5

el the

C onsulta 1 Consulta 2 C onsulta3 Consulta 4 Consult'i 5

s L e e

Consulta6 Consulta7 Consulta8 Consulta9 Consulta 10

N

Consulta 11 Consulta 12 Consulta 13 Consulta 14 Consulta 15

The analyzed network has achieved results comparable to the ones reported in [100] for
minilmageNet (around 45% classification accuracy for 1-shot and 60% for 5-shot). In turn, the
classification accuracy for the scene dataset has been around 58% for 1-shot and 78% for 5-shot.
Although these efficiencies are still far away from those yielded by complex state-of-the-art
networks trained with millions of images, the results obtained especially for the 5-shot case
prove that “few-shot” learning is a promising technology that can be advantageous for many

applications.

2.4. Scene recognition using deep neural networks
trained with the PLACES database [101]

2.4.1. Design

Deep convolutional neural networks are extensively used in computer vision nowadays.
Most well-known backbone network models are already implemented in public frameworks
(e.g., PyTorch, TensorFlow, Keras) and pre-trained with millions of images belonging to public
datasets (e.g., ImageNet, COCO, PLACES). PLACES365 is a dataset with millions of outdoor
images belonging to 365 different scenes. It is specifically targeted to scene recognition rather

than to object recognition.

This work has evaluated the performance of two state-of-the-art networks (ResNet18 and
ResNet50) pre-trained with PLACES365 when applied to the supervised classification of

outdoor images belonging to a particular collection of scenes (classes) of interest.

D3.v2 Technologies for Mobile Camera Networks 13
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In order to apply a pre-trained neural network to classifying images belonging to a set of
classes different from the ones used for its original training, it is necessary to extend that
network with a new block of fully connected layers that generates as many outputs as classes of
interest, and then to retrain the extended network with the new training examples. This is known

as “transfer learning.”

2.4.2. Experimental results

This work has evaluated the performance of public implementations of both the ResNet18
and ResNet50 state-of-the-art networks pre-trained with PLACES365 when applied to the
classification of a proprietary dataset of scene images belonging to the UAM campus.

In particular, the ResNetl8 and ResNet50 implementations provided in the PyTorch
framework and pre-trained with the PLACES365 dataset were extended in order to classify
scenes belonging to 10 different categories from the UAM campus, including outside views of
different campus buildings and sport utilities. The extended networks were retrained with 25
different training images per class (data augmentation was applied to those images) and
evaluated with other 10 test images per class. Some examples of those images are shown below:

The average classification accuracy obtained in those experiments was 85%. However,
although the classification performance for 7 classes was above 80% (with 3 classes scoring
more than 90%), there were 3 classes with relatively low accuracies of 60% and 70%. In most
cases, the reason for that poor behaviour was the overall visual resemblance of images belonging

to different classes.

As a conclusion of this study, the use of properly pre-trained state-of-the-art networks is not
sufficient for guaranteeing the proper recognition of specific scenes, even in a simple problem
such as the one targeted in this work. Indeed, classification based on the analysis of images as a

whole is not reliable enough and should also take into account details present in the images
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(objects, parts of objects, ...) for disambiguation purposes. This opens interesting new research

lines in scene recognition.

2.5. Unsupervised scene recognition using features
extracted from pre-trained neural networks [102]

2.5.1. Design

Deep convolutional neural networks are extensively used in computer vision for supervised
image classification and segmentation problems. However, the need for supervision implies the
availability of huge datasets with millions of labelled training images. This is not feasible for
many applications. As a consequence, the application of deep neural networks in an
unsupervised manner that avoids the use of huge annotated datasets is a very active research

area.

This work has evaluated the performance of an unsupervised scene recognition technique
proposed in [103]. This technique applies classical clustering to the features extracted by some
internal layer of a deep convolutional neural network, such as AlexNet and VGG16, after
feeding the network with a set of training images corresponding to the frames of a video
sequence recorded while traversing a given path. The different clusters obtained in an
unsupervised manner represent the different “places” in the video sequence. Each place/cluster
is represented by the cluster centroid. The different places that have been automatically
identified are then clustered by applying k-means. The obtained k classes are assumed to

represent different scenes appearing in the video (e.g., indoor vs. outdoor).

2.5.2. Experimental results

The technique described in [103] has been implemented upon the AlexNet and VGG16
network models provided in the PyTorch framework, both pre-trained with ImageNet. The two
unsupervised clustering algorithms involved in the process (determination of centroids and

clustering of centroids) were implemented in PyTorch with extensive use of GPU primitives.

The technique has been evaluated on a proprietary dataset with 200 training images and 200
test images belonging to two classes: indoor and outdoor. The indoor images correspond to
different views of the rooms of a house, whereas the outdoor images were captured during a

walk on foot over a city’s neighbourhood. Some examples of those images are shown below:
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The features extracted from 8 different layers of the VGG16 and AlexNet pre-trained
networks were used in the different experiments, considering both their convolutional and fully-
connected layers. The final goal was to classify the test images into the two scenes of interest
(indoor or outdoor), having characterized those scenes in an unsupervised manner by applying

the clustering techniques described above to the extracted features.

The obtained results show that the best scene classification performance was obtained by
clustering the output of the last fully-connected layers of both networks instead of the
convolutional layers that were only tested in [103], as shown in the table below for VGG16:

Precision Recall Medida F Precisién Recall Medida F
1 0.88 0.936 0.893 1 0.945 Fully Connected
(Linear 38)
1 0.78 0.876 0.812 1 0.896 Fully Connected
(Linear 35)
1 0.54 0.7012 0.685 1 0.813 Fully Connected
(Linear 32)
1 0.62 0.765 0.725 1 0.841 conv.
(Conv 5_3)
1 0.28 0.437 0.581 1 0.187 Conv.
(Conv 4 _3)
0.623 0.76 0.68 0.692 0.54 0.609 conv.
(Conv 3_3)
1 0.56 0.717 0.694 1 0.8213 conv.
(Conv 2_2)
o] o] o] 0.5 1 0.167 conv.
(Conv1_2)

The aforementioned classification results for the two considered scenes imply that the output
of fully-connected layers can be useful as high-level features that characterize the visual content
of images in a far more compact way than features directly extracted from the convolutional
layers. The results for VGG16 (max f-measure = 0.94) were slightly superior to those of
AlexNet (max f-measure = 0.89). This is consistent with the higher complexity of VGG16.
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3. Semantic Segmentation

3.1. Semantic Driven Multi-Camera Pedestrian
Detection Approach [3]

3.1.1. Design

Nowadays, pedestrian detection is one of the pivotal fields in computer vision, especially
when performed over video surveillance scenarios. People detection methods are highly
sensitive to occlusions among pedestrians, which dramatically degrades performance in crowded
scenarios. The cutback in camera prices has allowed generalizing multi-camera set-ups, which
can better confront occlusions by using different points of view to disambiguate detections. In
this paper we present an approach to improve the performance of these multi-camera systems
and to make them independent of the considered scenario, via an automatic understanding of the
scene content. This semantic information, obtained from a semantic segmentation, is used 1) to
automatically generate a common Area of Interest for all cameras, instead of the usual manual
definition of this area; and 2) to improve the 2D detections of each camera via an optimization
technique which maximizes coherence of every detection both in all 2D views and in the 3D
world, obtaining best-fitted bounding boxes and a consensus height for every pedestrian.
Experimental results on five publicly available datasets show that the proposed approach, which
does not require any training stage, outperforms state-of-the-art multi-camera pedestrian
detectors nonspecifically trained for these datasets, which demonstrates the expected semantic-

based robustness to different scenarios.

3.1.2. Experimental results

The proposed solution is validated by an extensive comparison with the state-of-the art
using five publicly available datasets described in [2]. The following Tables illustrate this

comparison. A brief discussion is included for each dataset. See full details in [3].

Results from Table 7 shows that the proposed method outperforms both used baselines
(Faster-RCNN [8] and YOLOv3 [7]) when both stages (Pedestrian Semantic Filtering and
Semantic-driven Back-projection) of the proposed method are used. Faster-RCNN, in terms of
N-MODA is outperformed by an 8.45%, a 4.70%, a 3.52% and a 20.68% for EPFL Terrace,
PETS 2009 S2L1, PETS 2009 CC and EPFL RLC respectively. On the other hand, YOLO is
outperformed by a 11.84%, a 1.14%, and a 15.25% for EPFL Terrace, PETS 2009 S2L1 and
EPFL RLC.
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Table 7. Stage-wise performance of the proposed method when Faster-RCNNN [9] and YOLOv3 [8] are
used as baselines. Indicators are Area Under the Curve (AUC), F-Score (F-S), N-MODA (N-A) and N-
MODP (N-P). Filt stands for "Pedestrian Semantic Filtering" stage and Fus & BP stands for "Fusion of
Multi-Camera Detections (Fus) and Semantic-driven Back-projection (BP)" stages.

{a) EPFL Terrace Dataset

(b) PETS 52 L1 Dataset

(d) EPFL RLC Dataset

Figure 4. Proposed method qualitative results on selected frames of the EPFL Terrace, PETS S2 L1,
PETS CC and EPFL RLC datasets.
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Qualitative results from Figure 4 represent bounding-boxes obtained by the proposed
algorithm on first to third columns. Most-right column represents detections on the ground
plane. (Faster-RCNN baseline is used for this qualitative example)

Datasct
EPFL Temrace PETS Sz L1 PETS CC EPFL RLC

Alporithm

F-5 N-A N-I -5 N-a NP F-5  Ma NI F-5 Na NI
Faster-RICNN |3] 124 .71 0.74 0.91 084 078 091 0.ES 076 T8 058 0.6%
YOLO «3 [I] .37 .76 .71 0,04 0,93 neT 0.o3 NET n.yo .78 .50 e
POM JIo .18 0.56 0G5 0LET 0,70 055
My«BN | HAP I-i| il 0,74 =7 i1, T (I 1.y
Projweed A pproesel [P

. o0 e 077 083 O0B8% 0.T% 0683 OBE 0T OEX OO0 OTO

Faster-RONM
Praposed Approach [PLD: i N i

LI-:1] L85 0.76 0.2 0.9 DL 0.84 0.EE 0.7a 0.EL 068 0.7

YOLCh3)

Table 8. Comparison with respect to both baselines (Faster-RCNN [3] and YOLOv3 [14]), and multi-
camera state-of-the-art methods non based on deep-learning (POM [10] and MvBN + HAP [4]).

Results from Table 8 compare the proposed approach, using Faster-RCNN and YOLOv3 as
baselines, with respect to multi-camera pedestrian algorithms. It can be observed that the
proposed method yields a higher recall, i.e. increases the number of correct detections by coping
with occlusions and pedestrian detector errors, while keeping similar precision, i.e. without
increasing the number of false positives. With respect to POM [10] and MvBN + HAP [4], the
proposed method also obtains better results in terms of N-MODA which, precisely, measures

detection accuracy along the whole sequences.

EPFL Wildtrack

Algorithm F-Seore  N-MODA N-MODP

Deep-Oeclusion [2) .86 0.74 0.53
-g Top-DeephdCD [27] 0n.va .G k.64
= ResNet DeephCD [12) 053 OL6T (1.6

DenseMet-Leophl CL1 ||2| 0n.va .53 G5

Proposed Approach® (Baseline: YOLOw3) 0.71 0.42 N
k- Proposed Approach® {Baseline: Faster-RONN) .64 .35 055
% Pre-DeepMCT [27] 0.51 .33 0.52
g POM-CHNN [10] 0.63 0.23 .30
-

RCNN-Projected [31] 0.62 n.11 .18

Table 9. Wildtrack Dataset Comparison Results. All the stated methods (except both baselines) are multi-

camera deep-learning based algorithms.
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Table 9 summarizes state-of-the-art results on Wildtrack Dataset [10]. "Trained" denotes
that the algorithm has been explicitly trained on Wildtrack dataset, while "Non-Trained" denotes
that the algorithm has not been trained on it. The proposed method, either with Faster-RCNN or
YOLOV3 baseline, is also able to outperform all deep-learning approaches that have not been
specifically adapted to the Wildtrack dataset. Our method improves 18.18% respect to Pre-
DeepMCD [11]—the second ranked—, which is an end-to-end deep learning architecture
trained on the PETS dataset.

3.2. Measuring the increase of diversity provided by the
Unified Semantic Segmentation Dataset

We have designed a python framework for the training of a semantic segmentation
algorithm that jointly considers five of the principal semantic segmentation benchmarks publicly
available. The idea is to leverage on different appearances of the defined semantic classes to
enhance the generality and scalability of semantic segmentation. To this aim, we have collected
and aligned the semantic classes of five semantic segmentation dataset into a Unified Semantic

Segmentation Dataset (see [2]).

We want to quantify the increase in diversity obtained in the shared classes by merging the
datasets. Diversity refers to the variety that exists within a dataset, species, cultures, etc. We
refer to the differences that exist within the same semantic class, that are directly related to the
richness of the semantic class and the dominance of one dataset over another. This analysis is
performed on those semantic classes that appear in more than one dataset of which the unified
dataset is composed. The analysis is performed on the 57 semantic classes that fulfill this

requirement.

In order to quantify the added diversity, we leverage on an existing framework for analysing
and comparing distributions [73]. Our hypothesis is that if we compare the distribution in terms
of a given set of features for samples of a given semantic class of the Unified Dataset with that
obtained by using only the samples of that class for one of the individual datasets that are

merged, these distributions will be more different if the diversity is increased.

3.2.1. Feature extraction

For each image, we use the binary mask image resulting from selecting a given semantic
class to isolate the RGB information for that specific class. Specifically, both images are

introduced in a pretrained CNN and the activations at a particular layer are extracted. In this
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case, activations at the eighth fully connected layer of an Alexnet network trained on ImageNet

were extracted, yielding a 1x1000 feature vector for each combination of image and semantic

class (see Figure 5).

* Alexnet —fc8

v

| Object features with
information of the
| scene

Figure 5. Feature extraction process

3.2.1. Comparison of feature distributions.

For a given semantic class, we randomly select 4000 samples (or the maximum available
number of samples, if it is smaller than 4000) of that class from the Unified Dataset (two times)
and one of the individual datasets that also contains that class. Therefore, three sets of samples
are created, one for the individual dataset and two for the unified dataset. For these three sets of

samples, we perform the feature extraction process described in the previous section.

With the three sets of features (Ul, U2 and V) we perform two Maximum Mean
Discrepancy Tests [73]. First Ul and U2 are compared to ensure that the sampling is
meaningful, which is tested by assessing that both sets shape similar distributions; hence
resulting in an acceptance test. Then we perform a Maximum Mean Discrepancy Test on U1 and
V, if the Unified dataset enlarges the diversity, this may result in a rejected test, as the

distributions may be different.

We repeat this process several times to reduce the effect of the random selection. In our

preliminary results, the test is rejected 100% of the times for 55 out of the 57 evaluated classes.
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3.3. Early experiments for semantic segmentation
using synthetic data

This section describes exploratory work focusing on the application of deep learning
algorithms to semantic segmentation. To be more precise, the goal is to test different semantic

segmentation algorithms with simulated videos instead of real ones.

We have tested two popular approaches: ENET [74] and DeepLabV1[75]. As generator of
synthetic data, we used the MSS simulator [76] to obtain several test sequences. Moreover, we
have compared different models from the CityScapes dataset [77], Cambridge-Driving dataset
[78] and Mapillary dataset [79].

The following figure shows some example results for the experiments performed. Full
details of the experiments can be found at the Undegraduate Thesis “Andlisis automatico de
video simulado con sistemas multicimara basados en UNITY”.

Nombre de video Frame original Frame ground truth

Frame predicho

s ¥

Secuencia video 5

Secuencia video 6

Secuencia video Real

Cuadro 4.3: Resultados CamVid parte 2.

Nombre del video 1oU (%)

Secuencia Coche 32.1
Secuencia Autobus 69.7
Secuencia Helicptero 65.2
Secuencia Peatdn 244
Secuencia Video 1 374
Secuencia Video 2 23.1
Secuencia Video 3 786
Secuencia Video 4 76
Secuencia Video 5 358
Secuencia Video 6 493
mloU (%) 49.2

Figure 6. Semantic segmentation results for ENET using synthetic data
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4. Multi-view matching

4.1. People/Car re-identification approach

4.1.1. Description of the algorithm

The proposed re-identification system [15] is based on the combination of adapted deep

learning feature embedding representations and a distance metric learning process.

This section includes the summary of the techniques used to develop the proposed multi-
camera person/vehicle re-identification approach. In Figure 7 we have the flow diagram of the
approach, first we obtain the features embedding representation using the query, train and test
sets. Then, we learn the metric in order to get the projection matrix with the features map. The
objective of using metric learning is to learn a feature space where features metrics that belongs
to the same object are closer than those of different ones. Finally, we obtain the distances
between each query and all the test set.

i Feature
: - embedding
i representation

Train sct

Metric

leaming

U

. YO

H
Feature
E - embedding
representation
\ J Rank

Test
Query Features — Top-100

Distance

f‘:“\, Projection
@ Feature
: ‘ - embedding
m—— representation —

Figure 7. Flow diagram of the vehicle RelD system approach.
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4.1.2. Feature representation

In order to extract the feature representations, we use the networks AlexNet [34], ResNet-18
[35], ResNet-50 [35], ResNet-101 [35], Densenet-201 [36] and Inception-ResNet-v2 [37]. We
choose these networks because of their relevance in scene and object classification.

Feature extraction module models the appearance of each detected box via deep learning
features by considering the different networks architectures, all of them pre-trained on the
ImageNet database [18]. Since ImageNet covers 1000 classes and we need to adapt the model to
our target, i.e. vehicles, we train some layers of the network while leaving others frozen. We
have based on [38] to decide the frozen parts of the networks. We freeze before the CNN block3
except for AlexNet that we freeze before the pooll layer. All the remaining parts of the networks
that are not frozen adapt their weights when we retrain on the vehicle images.

The input images of the CNNSs are resize to 227x227. The parameters used for the transfer
learning of the non-frozen layers are a learning rate of 3e-4 and a batch size of 10. We have

trained for 6 epochs and use Stochastic Gradient Descent with Momentum optimizer [39].

4.1.3. Metric learning

Instead of using the feature embedding representation and the Euclidean distance to rank the
test candidates, we improve the performance of the system introducing a supervision decision
using the training data. In particular, the metric learning allows learning a feature space where
the feature vectors of the same object ID are closer than the features from different objects. After
the evaluation of the three most common metrics from the literature (XQDA [40], NFST [41]
and KISSME[42]), we had chosen for the final evaluation the one with the best performance, the
XQDA.

4.2. Improvement proposals for the 2019 Al City
Challenge

All the improvements included are explained in detail in this section in order to obtain better
results than those obtained with the baseline method in the 2019 Al City Challenge [47].

4.2.1. Feature combination at distance level

To increase the performance of our system, we develop a decision combination at distance
level. As we can see in Figure 8, we first extract the feature representations and learn the metric

learning space. Then we compute the distances between the input query and all the images in the
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gallery. At this point, the distances are normalized between 0 and 1. The final re-identification
decision is based in the averaged distance.

Feature Dist |
Representations istances
. .\ R
Final Distance
ResNet101+XQDA
® ® Distance
@ : Combination| mmmp
]
B \_j

DenseNet201+X QDA

Figure 8. Feature combination at distance level.

4.2.2. Vehicle trajectory information

Each test track for the CityFlow-RelD dataset [47] contains multiple images of the same
vehicle captured by one camera. According to the ranked distance between the query and the test
gallery, we can assume that if there are some images of the same test track with small distances,
i.e., high confidence of being the same vehicle, the rest of the test track should be also included

in the RelD decision.

Therefore, we sort the test tracks that appear in each query (top-100 matches) according to
their first occurrence in the top-100 rank. We include progressively in ascending distance order,

all the images of the sorted test tracks until we complete the output list of 100 matches.

4.2.3. People re-identification results

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility

studies algorithms and findings”. This section describes the obtained people re-identification
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results [17]. We compare the results using hand-crafted (manual) features and Deep-learning-
based features (CNN). Table 10 shows the people re-identification results obtained in dataset
DuleMTMC4RelD [45] using Market1501 [44] as training dataset. Table 11 shows the people
re-identification results obtained in dataset Market1501 [44] using DuleMTMC4RelD [45] as
training dataset. Table 12 shows the people re-identification results obtained in dataset VIiPER
[43] using both DuleMTMCA4RelD [45] and Market1501 [44] as training dataset. In general, the
results show clearly that the re-training process improve significantly the CNN based features.
However, the traditional features or hand-crafted have been tuned during many year in the state

of the art of people re-identification and still gets better results.

MAN/CNN TYPE RANK1 RANKS RANK10 RANK20

WHOS 28,03 | 44,37 | 53,3 | 62,61
gBiCov 10,63 | 23,04 | 31,71 | 41,61
ANUAL | MEANCOLOR 1,23 | 469 | 733 | 11,62
LDFV 24,43 | 41,55 | 49,1 | 58,42
COLOR_TEXTURE | 17,36 | 31,63 | 41,09 | 50,35
HIST_LBP 12,98 | 26,49 | 34,02 | 43,13
RESNET101 19,05 | 34,80 | 45,09 | 53,49
DENSENET201 19,74 | 34,39 | 43,08 | 51,29
Alexnet 17,32 | 32,00 | 38,59 | 46,85
oy |Alexnet MARKET | 22,16 | 39,24 | 47,22 | 56,83
RESNET18 11,4 | 23,97 | 31,19 | 401
RESNET18 MARKET| 25,42 | 43,87 | 57,9 60,5
VGG16 82 | 2027 | 26,43 | 35,39
VGG16 MARKET 25,56 | 40,31 | 47,85 | 55,73

Table 10 People re-identification results obtained in dataset DuleMTMC4RelD [45].
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MAN/CNN TYPE RANK1 RANK5 RANK1O RANK20
WHOS 40,02 | 63,93 | 73,49 | 81,35
2BiCov 19,03 | 38,21 | 48,69 | 59,41
MEANCOLOR 1,01 | 3,77 6,5 11,52
MANUAL
LDFV 31,26 | 55,31 | 66,33 | 76,13
COLOR_TEXTURE | 28,03 | 49,91 | 60,69 | 70,4
HIST_LBP 24,35 | 45,64 | 55,85 | 66,24
RESNET101 17,01 | 37,35 | 48,25 | 59,09
DENSENET201 16,21 | 37,17 | 46,73 | 57,84
Alexnet 19,66 | 39,9 | 49,58 | 60,57
onn  |Alexnet DUKE 23,99 | 4317 | 51,9 | 61,61
RESNET18 10,21 | 24,11 | 33,31 | 43,68
RESNET18_DUKE | 36,46 | 59,29 | 68,71 | 77,38
VGG16 7,48 | 19,090 | 27,26 | 375
VGG16 DUKE 29,07 | 50,12 | 59,32 | 69,21

Table 11 People re-identification results obtained in dataset Market1501 [44].

MAN/CNN TYPE RANK1 RANKS RANK10 RANK20
WHOS 24,92 | 53,98 | 6839 | 82,28

gBi1Cov 9,91 | 24,59 | 34,19 47,1

MANUAL | MEANCOLOR 166 | 653 | 12,88 | 23,28
LDFV 27,07 | 56,16 | 70,4 83,8
COLOR_TEXTURE 22,15 | 51,16 | 69,97 | 78,27

HIST_LBP 20,62 | 46,19 | 61,17 | 75,89
RESNET101 14,56 | 36,16 | 49,18 | 64,46
DENSENET201 12,06 | 32,33 | 44,19 | 59,62

Alexnet 11,41 | 29,76 | 41,79 | 56,17
Alexnet_DUKE 11,79 | 28,13 | 38,35 | 51,09
Alexnet_MARKET | 18,73 | 39,72 | 51,34 | 65,06

CNN | RESNET18 62 | 19,22 | 2816 | 42,23
RESNET18_DUKE 22,12 | 45 58,18 | 72,45
RESNET18_MARKET | 18,78 | 41,47 | 53,56 | 67,34

VGG16 4,35 | 1527 | 2453 | 37,64

VGG16 DUKE 17,29 | 34,81 | 447 56,12

VGG16 MARKET 18,08 | 34,1 | 44,26 | 57,53
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Table 12 People re-identification results obtained in dataset VIPER [43].

42.4. Car re-identification results

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility
studies algorithms and findings™. This section describes the obtained car re-identification results
[15][16] over the car re-identification dataset CityFlow-RelD [46]. We first compare the results
using the three most common metrics from the literature (XQDA [29], NFST [30] and KISSME
[31]) using the baseline algorithms in Table 13 and Table 14. The results show clearly a better

performance using the metric XQDA.

mAP  Rank-1 Rank-5 Rank-10 Rank-20 Rank-50 Rank-100

GOG XQDA 5.75% 17.70% 32.57% 4L.37% 49.95% 64.60% 75.24%

GOG NIST 3.77%  1531%  26.17%  35.07%  44.73%  61.56%  TLITY

GOG KLFDA 5.21% 19.54%  30.62%  38.98%  47.34%  60.15% 70.36%

WHOS XQDA  6.10% 21.82% 35.72% 43.76% 55.16% 68.73% 77.09%

WHOS NFST 3.25%  15.64%  26.17%  35.07%  44.73%  61.56%  TLTT%

WHOS KLFDA  4.92% 1889% 31.16%  39.31%  47.45%  61.45%  72.53%

Table 13 GOG and WHOS comparison with XQDA, NFST and KLFDA.

XQDA NFST KLFDA
AlexNet (mAP) 6.91% 3.39% 4.16%
ResNet-18 (mAD) 5.54% 3.04% 3.85%
ResNet-50 (mAP) 8.90% 4.91% 5.37%
ResNet-101 (mAP) 8.72% 4.72% 5.59%
DenseNet-201 (mADP) 10.03% 6.00% 6.81%
InceptionResNetv2 (mAP) 6.10% 3.25% 4.92%

Table 14 Metric Learning comparison with baseline CNNSs. In bold is the XQDA result with

the best performance for all the networks.

The, we present the obtained results after re-tanning the CNN architectures (XNet_VPU
version) in Table 15. We realize that using the fine-tuned architectures we obtain more than the
double of mAP. For instance, in case of DenseNet-201 (architecture trained in ImageNet) and
DenseNet-201_VPU (architecture fine-tuned in CityFlow-RelD-subset) the mAP obtained is
10.03% and 30.02% respectively. Also, the rank list is significantly higher in case of fine-tuned

architectures.
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mAP Rank-1  Rank-5 Rank-10 Rank-20 Rank-50 Rank-100

AlexNet  VPU 12.66%  33.55%  50.38% 58.31% 66.78%  T6.44%  85.23%
ResNetl8 VPU 23.85%  53.42%  68.73% 73.91% 81.32% 87.51% 92.29%
ResNetb0 VPU 22.75%  55.2T%  69.16% 75.14% 79.91%  85.67%  89.47%
ResNet101 _VIPU 23.43%  56.35%  68.40% T4.59% R0.67%  86.43%  90.66%
DenseNet201 VPU 30.02% 63.19% 73.62% T78.50% 82.74% 87.30%  91.97%

InceptionResNetv2 VPU  16.39%  39.96%  58.96% 66.99% 74.92%  83.17%  89.90%

Table 15 Results of the fine-tuned deep learning feature methods obtained in the CityFlow-
RelD-subset, all of them with the metric learning XQDA. In bold are the results with the best
performance, in particular for DenseNet201_VPU and ResNet18 VPU.

4.2.5. 2019 Al City Challenge re-identification results
The results of the Al City Challenge have been published on May of 2019. There were three

tracks with different issues to solve. Fist track was City-scale multi-camera vehicle tracking,
second one was the City-scale multi-camera vehicle re-identification (our participation track)
and the last one was Traffic anomaly detection. The number of participants to each track were
22, 84 and 23 respectively, being our track the one with more participants. We published our
work in [16].

The environment given by 2019 NVIDIA Al City Challenge has allowed to submit up 5
results per day, with a total of 20 submissions. The results that have returned the server until the
competition deadline were computed on a 50% subset of the test data. The online server also has
provided a leader board with the top 3 results of all the competition and the own best result (in
case not to be on the top-3). Once the deadline has been reached, the server shows all the
submissions evaluated with all the test set and the entire leader board with all the participants'

best result.

In Table 16 we can see the results given at the end of the challenge of the different methods
that we have developed. First of all, we have the features embedding representation with XQDA
as metric learning and the CNNs AlexNet, ResNet18, ResNet50, ResNet101 and DenseNet201,
given ResNet101 and DensNet201 the best results in mAP and in Rank-1, and Rank-100 for the
case of DenseNet201. Then, we develop the distance combinations with the distance of
ResNet101, ResNet50 and ResNetl8 (DisCombResNet) and ResNet101, DenseNet201 and
ResNet50 (DistCombRes-Dense-Net), obtaining similar ranks values and a higher mAP than

with each network separately.
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When we include the information of the tracks files provided in the CityFlow-RelD [47]
explained in section 3.6.2, we improve the mAP with the inconvenient that we loss precision.
DistCombResNet method1 ,DistCombResNet method2 ,DistCombResNet method3 are the first,
second and third method respectively. The best result is given by the third method of the
distance combination of ResNet101, DenseNet201 and ResNet50 (DistCombRes-Dense-Net
method3) with a mAP value of 25.05%.

We compare the results obtained with our experimental setup included in Table 15 with the
ones obtained in the Al City server in Table 16. For instance, the value of AlexNet VPU in our
evaluation gives a mAP value of 12.66% while in the Al City evaluation is 7.04%. The same
thing happens with the results of the other feature embedding representations. In our evaluation
the results are around double than for the Al City server. That could be because, our evaluation
is done in a reduce subset of the CityFlow-RelD dataset given, and furthermore, the challenge

does not provide the entire data in order to make its own evaluation.

The method proposed in this paper has finished the 60 out of the 84 participating teams on
the challenge City-Scale Multi-Camera Vehicle Re-ldentification. In order to compare our
performance in the challenge with the other teams, we show in Table 17 the participants that are
in the multiples of ten positions in the rank. We can see that the team in position 40th (TJU0432)
that is in the middle of the ranked results of the challenge has a mAP score equal to 33.39%,
which is only 8.34% more than our mAP result (25.05%). Best mAP result achieved in the
challenge is equal to 85.54%. The teams with the best performance use as baseline the networks
trained using triplet loss or cross entropy loss. They also include in the classification step the
information of vehicle models and the vehicle orientation.

k=100 AT ChIC-1 [y [ CAC-10 N [ CARIC-100

WexNet_vpm T.01% a3 1 33,177 30355 5150 50,085
TesMet 15 vpu 1015 R AT

G321 T2.15%

Reshetd)_vpn 12057 . 196 GG T243%
'|i-:'.-"\'|-lllll_'-'||: 13515 a6 17535 (il =A% T4 14%

T Dense et 2ol _vpu 13,635 J6.31% LG, 4= [(EREEE Th. 14
DistCombResNer _vpu 13345 JOLITA 1014 G7.11% TR0
Dh=scCombResNer metheal 1 16.45%% S0.0T5 LH. 14 6. T1.48%
DhistClonnbIiesNet method2 2340 R R L Sa04%
DristC ombesNer methodd 24.25% LT SUUTA B 15714 3171
DhiscC oanldd es- Dense-MNet L. 6dFA 10T 19,81 65.32% G001 TH.BGY,

’ DhstC opn b les-Dhense-Met et liod3 a5 BT L LU 11255 17,535 S350

Table 16 Results obtained in the online evaluation Al City Challenge [47] server for our

different methods, all of them with the metric learning XQDA.

D3.v2 Technologies for Mobile Camera Networks 30



Video Processing
I and Understanding
Lab

Team Name Rank in Leader Board mAP Score
Zero_One

—

85.54%

UWIPL

ANU AT city tracking and Re-1D team

5
3

Hy'Z.] 10

BUPT-MCPRL 20

SYSUITS 30

TJUO432 10

Alpha 50 29.65%
VPUTeam 60 25.06%
NCTUAI 70 20.18%
FIRACK 50 1.46%

Table 17 Results of the leader board in [47].

4.3. Proposal for the 2020 Al City Challenge

All the improvements included are explained in detail in this section in order to obtain better
results than those obtained with the previous proposal in the 2019 Al City Challenge [47].

This section describes the details of the techniques used to develop the proposed multi-
camera vehicle RelD approach (see Figure 9). On the top of the figure we have the input of the
system, on one hand it is image-based in case of feature with the different combination of losses
and, on the other hand it is video-based for the keypoint and visibility estimation. The train step
adjust the weights of each pre-trained CNN modules to the CityFlow-RelD dataset. Then, the
test step infers the gallery and query images in order to obtain all the features. These features are
assembled to have a unique feature representation for each image. After that, a query expansion
and a temporal pooling for the gallery are applied in order to refine the feature representation
and to obtain more accurate results. Once the distances between the gallery and the query
images are calculated, the post-processing steps, re-ranking and the inclusion of trajectory

information methods proposed in this work, are performed to improve the final RelD results.
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Figure 9. Proposed system overview.

4.3.1. Feature Extraction

Image-based features extractors. This part of the sys-tem uses images as input and the
architecture chosen to obtain the feature representation is DenseNet121 [36] pre-trained
on ImageNet [66], based on Lv et al. [82]. To train this convolutional neural network, a
cross-entropy loss and a triplet loss trained with batch-hard sampling method are used.
According to the different variations on loss functions, it could be divided in the feature
extractors: The first uses label smooth regularization (LSR) and triplet loss with hard
margin, The second network training conditions also use LSR and triplet loss, but in this
case it is trained using softmargin [83]. In the last module, the training loss variation

combines LSR, triplet loss with hard margin and Jitter Augmen-tation.

Video-based features extractor. The input to this part of the system are a set of images
(bounding boxes), consecutive in time and location, of the same vehicle. The features extractor
convolutional neural network is ResNet50 [35] pretrained on ImageNet [66] that obtains the
features related to appearance of the identity. Following [80] and [81], the orientation of the

vehicle is obtained locating the 36 vehicle keypoints that define 18 vehicle orientation surfaces.
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The surfaces determine the visible areas of the vehicle, giving the orientation. This structure
features are concatenated to the previous appearance features and a triplet loss hard margin and a
cross-entropy functions are included in the training.

4.3.2. Feature Ensemble

Once the three features from image-based part and the appearance and structure feature form
the video-based are extracted, in this module of the system they are concatenated in order to
obtain a more robust representation feature. To perform this combination, the four different

features must be normalized by L2 normalization.

4.3.3. Query expansion and Temporal pooling

In order to obtain a more discriminative feature representation, a query expansion [84][85]
and a temporal pooling for gallery are applied. The proposed query expansion performs a sum-
aggregation and re-normalization of the features that belong to a specific query and the top-k
gallery features that are retrieved as the sorted RelD list. The resulting feature will be the new
query feature. Then, for the gallery features, it takes into account the trajectory information and
performs an average pooling for the T—1 consecutive images. In this work, T is fixed to 6 (as

proposed in [81]).

4.3.4. Post-processing: Re-ranking and Trajectory information
inclusion

Re-ranking with k-reciprocal encoding. Following [86] we include a post processing step
that exploits the hypothesis that if a gallery image is close in the retrieval result of a probe in the
k-reciprocal nearest neighbors, its chance of being a true match is higher. For this task, the k-
reciprocal nearest neighbors features are encoded into a single feature which will be used for the

re-ranking using Jaccard distance.

Trajectory information. Already described in previous section 4.2.2.

4.3.5. 2020 Al City Challenge re-identification results

All the experiments developed to analyze the performance of the proposed method are
collected in this section. The two metrics used to evaluate the performance are mean Average
Precision (mAP) [87] of the top-100 matches, that is the mean of all the queries’ average
precision (area un-der the Precision-Recall curve), and the other metric is therank-100 hit rate

(additionally, rank-1, rank-5, rank-10, and rank-30 hit rates are shown).
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Table 18 shows the different proposed system configurations results obtained on the online
evaluation server. Feature-1 is the feature extractor block that we can see in Figure 9, which
applies Densenetl121 network with LSR and triplet loss with hard margin. Feature-2 is
Densenet121 with LSR and triplet loss with soft margin and, finally, Feature-3 is the same CNN
architecture with jitter augmentation, LSR and triplet loss with hard margin. After assembling
these three methods (Ensemble 1-2-3) the result (mAP= 0.3099) overcomes in 3.71% to
previous result of the best feature. In the last step, the trajectory information is included using
method 1 and method 2 described in3.4. Method 1 improves the previous ensemble result in a
3.24%, whilst method 2 in an 11.27%.

Rank-100 mAP [ CMC-1 | CMC-5 | CMC-10 | CMC-30 | CMC-100
Feature-1 0.2984 0.5152 | 0.5295 | 0.5551 0.6768 0.7338
Feature-2 0.2422 0.4411 | 04705 | 04829 0.6169 0.7015
Feature-3 0.2013 0.4724 | 04043 | 05121 0.6507 0.7243
Ensembe 1-2-3 0.3099 0.5276 | 0.5361 0.5494 0.5827 0.6036
Ensembe 1-2-3 + Track-1 0.3203 0.5276 | 0.5276 | 0.5323 0.5789 0.5989
Ensembe 1-2-3 + Track-2 0.3493 0.5276 | 05276 | 0.5314 | 0.5779 0.5941
Ensembe 1-2-3+Appearance Structure 0.3412 0.5504 | 0.5504 0.5637 0.5884 0.6046
Ensembe 1-2-3+AppearanceStructure + Track-1 0.3478 0.5504 | 0.5504 | 05542 | 0.55827 0.5960
Ensembe 1-2-3+Appearance Structure + Track-2 0.3626 0.5504 | 0.5504 | 05542 0.5837 0.5941

Table 18 Table of results obtained in Evaluation server for our different proposals. Bold

indicates best performance per metric.

Moreover, the module of appearance and structure feature extraction is included. As we can
see in Table 18, it supposes an increase in terms of mAP with respect to the feature 1, 2 or 3 due
to the introduction of the video-based feature. If we compare the ensemble of the three
appearance features with the ensemble with the three features and the appearance and structure
video-based one, this last one provides an improvement of 8.96%. As earlier noted, including
method 2 of the trajectory information gives an improvement, in this case of 5.9%. Figure 10
shows the visual result of two specific queries for Feature-1 compare with the assembling of the
three features and fourth one (appearance and structure). In case of using only feature-1, it
returns more false matches. Then, Figure 11 shows the RelD result of two different queries. The
upper row for each query belongs to the results of ensemble the Features 1-2-3 and the
appearance and structure feature, and the lower row corresponds to the same feature ensemble(
at all are true positives, but when we move in the rank list, we can see that the trajectory
information provides more true positives. In addition, Table 19 shows the results of the leader
board in the Al City Challenge 2020, where the system proposed in this work achieved
the30thrank on the list with a (mAP= 0.3626) using the feature ensemble method of the four

features and the trajectory method 2.
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| Ranking | TeamID | mAP |

1 73 0.8554
2 42 0.7917
3 39 0.7589
10 81 0.6191
20 35 0.5166
30 66 0.3623
41 20 0.3339

Table 19 Table of track 2 leader board: City-Scale Multi-Camera Vehicle Re-ldentification.

Bold indicates this system approach.

Figure 10. Example 1 of the visual results for the proposed RelD system. It shows two
queries (in yellow), the upper rows of each query is the result for only use Feature-1,
and lower rows is the result of ensemble the four-feature representation. Green blobs

represent true matches and red blobs false matches.
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Figure 11. Example 2 of the visual results for the proposed RelD system. It shows
two queries (in yellow), the upper rows of each query is the result of ensemble the four
feature representation, and lower rows is the result of Ensemble the four features
representation and trajectory method 2. Green blobs represent true matches and red
blobs false matches.

4.4. Use of attributes for People/Car re-identification

The focus of this project is the study of people and vehicle re-identification systems based
on the combination of deep learning characteristics and traditional characteristics that describe

the data used.

The main idea is the combination of deep learning architectures for re-identification with the
attributes extracted automatically with a pre-trained attributes classification. The proposal will
be evaluate for both people and car re-identification. The corresponding dataset will be Market
and Aicity, with twelve and six annotated attributes. See Figure 12 and Figure 13 for more
details.

D3.v2 Technologies for Mobile Camera Networks 36



Video Processing
and Understanding
Lab

Universidad Autonoma
de Madrid

A\l

UA]

Attribute
gender

Label

hair

up

down
clothes
hat
backpack
bag
handbag
age

i RPN NN

upwhite

N NN

downred

Figure 12. Market example with the twelve attributes.

Atributo Etiqueta
Vehiculo Camioneta
Marca GMC
Color Blanco
Techo No
Ventanas Si
Orientacion | 6

Figure 13. Aicity example with six attributes.

The results combine the feature extracted with the already described re-identification
baseline (see section 4.1) and the feature extracted from the trained attribute classifier. This
combination has been tested for two deep network architectures ResNet [35] and Densenet [36]
and different weighting between the deep learning feature and the attribute classifier. Table 20
and Table 21 show example of obtained results for people and car re-identification respectively.
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MARKET-1501 / RESNET (0.1, 64)
Pesos Topl mAP
RE-ID | Metadatos | Normal | Re-Ranking | Normal | Re-Ranking
100 % 0% 0.878563 0.898159 0.709395 0.839944
50 % 50% 0.852827 0.889067 0.650357 0.812799
75 % 25% 0.875423 (0.897473 0.704840 (.836081
90 % 10% 0.884470 0.905879 0.718535 0.849621
95 % 5% 0.880204 (0.905583 0.717019 0.849992
99 % 1% 0.876720 0.904988 0.713246 0.849941

Table 20. Re-identification results after combining teh original deep learning features with

the features extracted from the attribute classifier (“Metadatos™). In blue the original or baseline

results, in green the best results.

AICITY / RESNET (0.01, 16)
Pesos Topl mAP
RE-ID | Metadatos | Normal | Re-Ranking | Normal | Re-Ranking
100 % 0% 0-692725 | 0.706840 | 0.386364 | 0.429138
50 % 50 % (.534202 0.408252 0.260896 0.192120
75 % 25 % 0.674267 0.682053 0.374616 0.379257
90 % 10 % (.689468 0.716612 0.389373 0.429596
95 % 5% 0.699240 0.711183 0.389004 0.431893
99 % 1% 0.692725 0.706840 0.386891 0.429984

Table 21. Re-identification results after combining teh original deep learning features with

the features extracted from the attribute classifier (“Metadatos™). In blue the original or baseline

results, in green the best results.

In general, although the general improvement is relatively small, the results show how the

use of attributes always gets an improvement with a small weight of the attribute classifier. In

the future, we will explore other strategies for combining both sources of information.
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5. Cooperative detection and tracking

5.1. Single-target tracking

5.1.1. Description of the algorithm

We present a detection-based multiple object tracker from Unmanned Aerial Vehicles
(UAVs). This work is included in the European Conference on Computer Vision (ECCV) 2018
proceedings[48].

The proposed detection-based tracker models the targets by their visual appearance (via
deep features) and their spatial location (via bounding boxes). It is composed of five main
modules (see Figure 14), which are described hereunder, and receives as inputs the frame under
consideration and the detections for each frame (i.e. bounding box, confidence and object class),
provided by an external object detection algorithm. The output for each target is a track

describing the sequential information over time.

. Model Update

Features Extraction
= . Crop Data Track Tracks
Frame | ResNet 101 Features | Assoclation Management ’

i

Inuput - - | ’T‘ T : - —

Filte T )

detections Hering L{ Spatial Prediction |

Figure 14. Block diagram of the proposed algorithm

5.1.1.1. Features Extraction

The feature extraction module describes the appearance of bounding boxes. Based on Faster-
RCNN [49], we compute features from the input frame with the ResNet-101[50]. deep residual
network (pre-trained on the COCO dataset?) at layer corne3_12. We use as region proposals the
provided detections after confidence-based filtering. For each proposal we get a 512 x 7 x 7

feature map by crop pooling [51], which becomes a 512 features vector by average pooling.

1 https://github.com/ruotianluo/pytorch-faster-rcnn
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5.1.1.2. Spatial Prediction

The spatial prediction module infers each target location in following frames. We use an
eight dimensional state-space for each target, containing its bounding box center position  x, ¥],
aspect ratio (], height (}), and respective velocities { #x, v¥, &7, vh). We employ Kalman
filtering [70] for predicting the state space. For updating the predictions, we use the associated
filtered detections as observations in the model update module. State prediction is performed at

the end of the current frame, being employed for data association in the next frame.

5.1.1.3. Data Association

The data association module matches the filtered detections with the trajectories of tracked
targets by using the Hungarian algorithm[52]. We propose to perform association in two stages.
First, we use appearance features to match detections and predicted targets. Similarity is
computed as the cosine distance between the detection appearance descriptor and the target
appearance model (i.e. the last N appearances of the target). Second, we consider the unmatched
detections and predictions in the previous stage and we apply again the Hungarian algorithm
using their spatial predicted descriptors (i.e. bounding boxes). The similarity between bounding

boxes is determined on the basis of the Intersection over-Union criterion[53].

5.1.1.4. Track Management

The track management module is in charge of operations such as track initialization and
suppression. We employ two counters per track for handling initialization and suppression. One
counter focuses on the number of consecutive frames where the track is kept. Another counter
focuses on the number of consecutive frames where the track is lost. Track initialization is
defined when unmatched detections exist and the first counter is above a threshold (min_life)
whereas track suppression is performed when the second counter is above another threshold

(max_unmatched).

5.1.1.5. Model Update

The model update module keeps a buffer of the last appearances for each track (i.e. features

vector of detections associated to the track).

5.1.2. Results

We evaluated our approach (FRMOT) on the VisDrone 2018 Benchmark [54] held in ECCV
2018. Table 22 shows the ranking of the challenge. Although our algorithm (FRMOT) ranks 4.0,
due to the averaging of the ten metrics that are considered, we obtain better MOTA, IDF1, FAF,
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MT, ML, FP, FN, IDS and FM than at least one or more algorithms. Figure 15 depicts a sample

» . ;
U /ﬁA Universidad Autonoma
de Madrid

frame with the identifiers and bounding boxes of the tracked vehicles.

Table 22. From [48], multi-object tracking results on the VisDrone-VDT?2018 testing set. Rank is
computed averaging ten metrics. Algorithms with « were submitted by the commitee

Method |Rank|MOTA MOTP IDF1 FAF|MT ML FP FN IDS FM
V-10U 2.7 | 40.2 749  56.1 0.6 297 514 11838 74027 265 1380
TrackCG | 2.9 | 42,6 741 58.0 0.86|323 3895 14722 6060 779 3717
GOGEOC | 3.2 | 369 75.8 46.5 0.29|205 589 5445 86399 354 1090
SCTrack 3.8 | 35.8 7H.6 451 039211 550 TI98 85623 TUs 2042
Ctrack 3.9 | 30.8 3.5 519 1.95|369 375 36030 62819 1376 2190
FEMOT | 4.0 | 33.1 730 508 115|254 463 21736 74953 1043 2534

GOG™ [37] - 384 751 451 054|244 496 10179 78724 1114 2012
IHTLS* [11]] - 36.5 T4R8  43.0 094|245 446 14564 75361 1435 2662
TBD* [15] - 356  T41 459 1.17 (302 419 22086 70083 1834 2307
H*T* [54] - 322 733 444 04895214 494 17889 TUS01 1269 2035
CMOT" [3] | - 315 733 513 1.42|282 435 26851 72382 T89 2257
CEM”™ [34] - .1 723 192 112105 752 21180 116363 1002 1858

Figure 15. Sample frame with tracking results of one the sequences of the VisDrone 2018 dataset.
Numbers stand for the identifiers of the tracked vehicles.

5.2. Multi-target tracking

5.2.1. Description of the algorithm

The proposed Multi Target Multi Camera (MTMC) tracking method was published in the
proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) 2019 [56] within the scope of CityFlow: A City-Scale Benchmark for
Multi-Target MultiCamera Vehicle Tracking and Re-Identification [57].
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The proposed tracking approach is mainly composed of two main blocks, as shown in
Figure 14, for analysing data in single and multiple cameras set-ups, respectively. The first block
aims to detect and track vehicles from each independent camera. The second block performs
tracking across multiple cameras by modelling appearance of bounding boxes detected for each
camera; projects them into a common plane to group detections of the same object coming from
different cameras; and, finally, associates trajectories over time to compute the final tracks.

cam 1 —'—}I Ohject Detection H MTSC Tracking I—-—)r

cam 2 —-%I Ohject Detection H MTEC Tracking I—) Feature GTUL]I'I[l' Spﬂrlﬂ'
Tracks

b A
Extraction Plane lemporal
cam N —-—}I Object Detection H MTSC Tracking I_)'\__

Clustering Association

Figure 16. Block diagram of the proposed tracking method.

5.2.1.1. Single-camera Tracking and Object Detection

Multi Target Single Camera (MTSC) tracking is performed solving the tracking-by-
detection problem. The CityFlow benchmark provides detections as bounding boxes using three
popular detectors: YOLOv3[58], SSD512 [59] and Faster R-CNN [49]. These three detectors
make use of pre-trained models on the COCO benchmark [60] and the threshold value of 0.2 is
applied to finally obtain the detections. For tracking based on these detections, two online
approaches such as DeepSORT [61] and MOANA [62] are employed, and also TC [63] as an
off-line method. The CityFlow benchmark provides results for nine MTSC tracking solutions by
combining the above-mentioned detectors (three) and trackers (three).

5.2.1.2. Feature Extraction

Feature extraction module models the appearance of each detected box via deep learning
features by considering the AlexNet [64] and ResNet-101 [65] architectures, both pretrained on
the ImageNet database [66]. Since ImageNet covers 1000 classes and we need to adapt the
model to our target, i.e. vehicles, we train some layers of the network while leaving others
frozen. In detail, ResNet-101 is frozen before diock3, and AlexNet is frozen before poail
layer, following [67]. To fine-tune the network, we have employed 36,935 sample images of 333
vehicle identities, extracted from the training set of RelD track 2 in the 2019 Al City Challenge.
We also set the learning rate to 3¢ — 4 and batch size to 10. We train for 6 epochs and use

Stochastic Gradient Descent with Momentum optimizer [68]. AlexNet architecture give us a

D3.v2 Technologies for Mobile Camera Networks 42



Video Processing
I and Understanding
Lab

4096-dimensional feature vector at the output of f«7 layer, while we obtain a 2048-dimensional

vector at pealS layer in ResNet-101 network.

5.2.1.3. Ground-Plane Clustering

This module is in charge of associating detections of the same vehicle from different
cameras obtained at the same time. At every frame, we project all detections of every camera to
a common plane and apply hierarchical clustering to cluster such projected detections. In
addition, we employ cluster validity indexes to determine which cluster structure is more

suitable for our problem (i.e. find the optimal number of clusters).

For ground-plane projection, we use homography matrices from 2D image pixel location to
GPS coordinates. Therefore, we consider GPS coordinates plane.

For clustering, we employ Hierarchical clustering based on two features: visual appearance
and spatial distance in the ground-plane. Since two detections widely separated are highly
unlikely to come from the same vehicle, we set a threshold such that the distance between
vehicles’ detections further than 6 meters in GPS plane is set to a much higher value, i.e.
impossible association. Similarly, as two detections coming from the same camera cannot be
merged into the same cluster, the distance between them is also set to the same high value (100
meters). By this way, two detections are more likely to fit the same vehicle if they are spatially

close on the ground-plane and have similar visual appearance.

Ideally, each cluster represents a vehicle and it can be composed of several detections from
different cameras or composed of merely one detection. As the number of the number of clusters
is unknown a priori, we have to determine empirically such optimal number. We therefore
validate different clustering results using validation indexes. We use internal validation, more
specifically, Dunn’s index [69], which aims to identify dense and well-separated clusters. By
this way, all possible associations with different number of clusters are computed and we obtain
an index value for each one. We obtain the optimal number of clusters, i.e. the number of
vehicles, by taking the index with maximum derivative, i.e. the point of higher gradient. We

empirically found that maximum derivative provides better information than maximum value.

5.2.1.4. Spatio-Temporal Association

The following task, consisting on linking clusters over time, is performed by the spatio-
temporal association module. Positions of each cluster along time form a track. Tracks motion is

estimated via a constant-velocity Kalman Filter [70] and association between clusters and

D3.v2 Technologies for Mobile Camera Networks 43



Video Processing
I and Understanding
Lab

predicted tracks is performed by the Hungarian Algorithm [52] using Euclidean distance
between the spatial distances. As for track management, we initialize tracks for clusters (i.e.
associated detections across cameras) that remain unassigned for 10 frames. Moreover, we also

remove tracks which are not associated to any cluster for 20 consecutive frames.

5.2.2. Initial results

Leaderboard of CityFlow Challenge is shown in Table 23. This classification ranks
identification precision (IDF1) on the test scenarios (S02 and S05). Both scenarios comprise a
total of 23 cameras. S02 is formed by 4 confronted cameras in a road intersection. However, S05
consists of 19 cameras, spread out over a wide extension, where maximum distance between two
cameras is 2.5 kilometres. It is important to remark that cameras in S02 are completely
overlapped between each other, while in SO5 there is no overlap between most of them. Since
our approach is completely dependent on projections, and therefore on overlap, predictably, it

results in a low performance, as can be seen in Table 2.

Table 23. Leaderboard of City-Scale Multi-Camera Vehicle Tracking, evaluated on test scenarios

| Ranking | Team ID | IDF1 |

| 21 0.705%
2 4% (.6E65
3 12 0.6653
4 53 (.6644
5 a7 06519
& 39 (L3987
7 36 0.4924
b 107 (h4504
9@ [0 0.3369
1 a2 (. 2R
1 48 0.2846
12 113 (.2272
I3 08 02183
14 7 (L2144
15 a1l 0,1752
16 "7 (L1714
17 T 0.1634
15 04 (L0664
19 43 R
20 128 (L0544
21 ik (L0473
22 45 0.0326

Figure 17 shows tracking results for scenario S01, formed by confronted cameras, in a
similar way to SO2.
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Figure 17. Sample visual results in train scenario S01, cameras 1-4. Tracked vehicles in yellow with their
correspondent IDs. Same blue car is identified with the same 1D, as well as the red car. However, an error
in the single camera tracking leads to a tracking error in the red car in camera 2.

5.2.3. Further extensions and experiments

5.2.3.1. Window-based processing

This extension affects the ground-plane clustering module. Due to noise in the video
transmission while capturing the data of the CityFlow benchmark [88], some frames are skipped
within some videos, so some cameras suffer from a few misalignments of synchronization along
time. We can observe this misalignment in the figure below, where the red car appears at

different position on the road depending on the camera view.

Figure 18. Cameras 1-5 at frame 291.
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In order to deal with this bas synchronization, we designed and implement a new version of
the Multi Target Multi Camera (MTMC) tracking algorithm, employing temporal window-based
processing. The figure below depicts a diagram of the proposed window. Windows may have a

variable size, as well as variable stride.
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Figure 19. This example considers a window of 49 frames. Only the trajectories in the reference frame
are considered.

The proposal considers only the trajectories that are present in the frame under analysis. As
appearance descriptor we considered the average of all the descriptors in the trajectory. The
similarity between appearance descriptors is computed as the Euclidean distance, as in the
original approach. The spatial distance between trajectories is computed using Dynamic Time
Warping [89]. In order to evaluate the approach individually, we assessed only the ground-plane
clustering results, without performing the spatio-temporal association. The table shows
Precision, Recall, F-Score, the number of vehicles in the ground-truth, the number of computed
vehicles, True Positives, False Positives, False Negatives, the window size W and the

appearance model used, i.e. ResNet101 as backbone with pre-trained weights on Imagenet.

The following table indicates that the proposed algorithm with W = 1, 5 and 11 frames
works in a very similar way, however increasing the window size decreases considerably the
performance. From the data we have observed than the misalignment is such that at least a
window of 40 frames is required to join misaligned trajectories. Also, it is important to remark
that the bigger the window is, the higher is the computational cost and time. Having this and the
results under consideration, we decided not to follow this line of work. In addition, window-

based processing would lose the causality of the approach.
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Table 24. Clustering performance of the proposed approach varying the window size W

P R F GT PRED TP FP FN W  MODEL

21,78 57,43 31,11 20772 53433 11733 41700 41700 1 ResNet101 Imagenet
21,59 57,05 30,85 20772 53433 11618 41815 41815 5 ResNet101 Imagenet
21,79 57,46 31,12 20772 53433 11728 41705 41705 11  ResNetl0lImagenet

19,85 53,01 28,45 20772 53433 10627 42806 42806 49 ResNetl0lImagenet

5.2.3.2. Improvement of feature appearance: vehicle discriminator Siamese
network

We have design, trained and evaluated a siamese network architecture for discriminating
pairs of given vehicles at different camera views. The figure below illustrates an overview of the
block diagram. The network requires at the input a pair of images, in the form of bounding
boxes, depicting two view of vehicles. Both bounding boxes feed a Convolutional Neural
Network (CNN) in order to extract their N-dimensional feature descriptors. Both descriptors are
concatenated to compute a 2N-dimensional embedding. Lastly, a classifier provides the
likelihood of the pair of images depicting the same vehicle.

ey
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=
=
|
| M features |

(1 = same car

— 1 = not the same

2.M features
Classifier

\

Figure 20. Block diagram of the vehicle discriminator network
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The following figure shows samples of pairs and the class label associated to them. This
figure also displays the viewpoint variation problem, the major challenge in MTMC vehicle
tracking. Due the intrinsic geometry, distinct vehicles may appear quite similar from the same

viewpoint, however the same vehicle from different viewpoints may be difficult to recognise. It
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can be extremely hard, even for humans, to determine if two vehicles from different points of

[
M

&/ \

view depict the same car.

O o 1 = 1 5!0 '.li .O.‘.: 1&): O 0%
Figure 21. Samples of pairs of vehicles and the corresponding class label: 0 (same vehicle) and
1 (different vehicle)

As the CNN backbone we employed ResNet-50 pretrained on the Imagenet dataset, and the
feature embeddings are taken just after the last average pool layer and before the fully connected
layer (fc_1 layer). Thus, N = 2048. The classifier is composed by a batch normalization, ReLU
and a 4096-d fully connected layer.

5.2.3.3. Regularization techniques

New mixup training proposal: siamese mixup

As a regularization technique, to deal with the overfitting problem during training, the
original mixup strategy was proposed by [90]. In essence, mixup trains a neural network on
combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural
network. To apply the mixup strategy in the training of our siamese network we propose the
siamese mixup. ¢ € [01] is the mixing weight. t#¢#{x determines the vehicle ID. Figure 5 shows
how we obtained two mixed images that will be the input of the discriminator network (see the
following figure).
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Figure 22. Example of siamese mixup strategy
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Figure 23. Block scheme of the siame mixup strategy

When training the discriminator network, the loss criterion employed has to be modified in

the following way

Lrorar = tae * Slp. Inbel ) + o - L0p. Inbel o ) + oap - Slp. Inbel 00 + ogp - S0, Inbel o)

being - = ety - o- and
{0, Iebely = Inbel,
lobel = {1, Inhel, % lohal,

By doing so, all the possible pair combinations are proportionally considered in the loss

function. We used the Cross Entropy loss as loss criterion.

Dropout regularization

We also included the dropout strategy [91]. During training, some number of layer outputs
are randomly ignored or “dropped out.” Dropout has the effect of making the training process
noisy, forcing nodes within a layer to probabilistically take on more or less responsibility for the
inputs. It results in a network that is capable of better generalization and is less likely to overfit
the training data. This was simply implemented in the classifier just by adding a Dropout layer

after the ReLU layer and before the fully connected layer.
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Gradual warmup

The intuition behind warmup training strategies [92] is to help the network to slowly adapt
to the data and also, to allow adaptive optimizers (e.g. Adam, RMSProp, ...) to correctly
compute the gradients. Gradual warmup consists in starting with a small learning rate and

gradually increase it by a constant until it reaches the initial desired learning rate, see Figure 7.

Warmup learming rate

v
L]

batchll
Figure 24. Gradual warmup training

Experiments

For validating our proposal, we have considered the training set of the CityFlow benchmark
(S01, S03 and S04 scenarios). It comprises 129 vehicle IDs and 29669 bounding boxes (230 in
average per ID). We randomly split the data into the training subset (90%) and the validation
subset (10%). Each input image containing a bounding box of a vehicle is adapted to the
network by resizing it to 224 x 224 x 3 and the pixels are normalized by the mean and standard
deviation of ImageNet dataset.

We performed a validation methodology by entering pairs of vehicles to the network and
computing the accuracy between the ground-truth and the network prediction. The ground-truth
is computed by comparing the vehicle IDs (0 = same car, 1 = different car). Tables 2 and 3
shows the impact of the different strategies. They include the training batch size, the starting
learning rate and the number of epochs for decaying the learning rate. Finetuning denotes that

also the last encoder of ResNet-50 is trained.

Table 25. Ablation study with batch size = 100
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BATCH STARTING DECAY MIXUP FINETUNE DROPOUT WARMUP PREC. PREC.

SIZE LR LR (20 %) (0,001) VAL  TRAIN
100 0,01 15 - -- - - 78,34 87,06
100 0,01 15 - yes - - 89,47 94,69
100 0,01 15 - yes - yes 88,71 97,19
100 0,01 15 yes yes - - 85,49 94,82
100 0,01 15 yes yes yes - 84,06 93,50
100 0,01 15 yes yes -- yes 88,72 94,59
100 0,01 15 yes yes yes yes 83,88 95,44
100 0,01 15 -- yes yes yes 86,81 95,44

Table 26. Ablation study with batch size = 200

BATCH LR DECAY MIXUP FINETUNE DROPOUT WARMUP PREC. PREC.
SIZE LR A (20 %) (0,001) VAL  TRAIN
200 0,01 15 yes -- -- -- 73,95 81,44
200 0,01 15 yes yes -- -- 85,47 93,89
200 0,01 15 yes yes yes = 83,69 89,54
200 0,01 15 yes yes -- yes 86,04 93,46
200 0,01 15 yes yes yes yes 82,99 94,98

The validation and trainig precision shown in the table are taken from the best epoch (i.e.
when the validation loss reach a minimum peak), however these number may not be
representative of the real behaviour of the model. For a better visualization Figure 8 shows the
graphs of the training and validation loss during the training process. For instance, the fist
graphic shows a peak performance of the validation loss in a very early epoch, however the loss

afterwards, tends to increase.
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Figure 25. Training and validation losses. Batchsize = 100, starting LR = 0.01 and LR decay = 15

From the graphs we can observe that just fine-tuning the network with no additional
regularization technique leads to a wrong training where the validation loss tends to increase,
instead of decrease. Adding the dropout strategy helps a few to reduce the overfitting, however it
does not have a great impact, since the validation loss still tends to increase. Including the mixup

strategy makes really the difference in solving the overfitting problem.

5.2.3.4. New data: Veri-776 Dataset

We have also used VeRi-776 [93] dataset for improving the feature extraction model by
increasing the training data. VeRi-776 is one of the largest and most commondataset for
vehicle re-identification in multi-camera scenarios. It comprises about 50,000 bounding boxes of

776 vehi-cles captured by 20 cameras.

The following figure shows a comparison between considering only the Cityflow dataset
and both of them. In these trainings BS = 100. Mixup, dropout and warmup strategies are used.
ResNet-50 is also finetuned. The starting LR = 0.01. The graphics of the losses evolution show
a correct training where both training and validation losses decreases and converge. The
precision graphics show that the Cityflow training converge at around 80% of precision, while
the combination of both datasets provides more than 90% of precision. Note also, that training

with more data makes the curves to be smoother.
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Figure 26. Training and validation loss and precision graphs

In order to show the complexity of the problem under consideration the net figure shows

examples of pairs of vehicle the trained network fails to discriminate.

100
150
200

250

100 200

Erroneous
prediction Different Same Same Same

Figure 27. Samples of erroneous predictions

Note that while the first two error seems to be due to the bad quality of the images (due to
far vehicles), the last two seems to be conducted by the colour of the vehicle.

D3.v2 Technologies for Mobile Camera Networks 53



Video Processing
I and Understanding
Lab

Universidad Auténoma
de Madrid

[
M

&/ \

5.2.3.5. Calibration

Confident calibration (the problem of predicting probability estimates representative of the

true correctness likelihood) is important for classification models [94]. Classification networks

must not only be accurate, but also should indicate when they are likely to be incorrect. In order

to check whether our network is calibrated we computed the following reliability diagram. To

compute this diagram, we analysed all the given predictions by intervals and compute the real

accuracy of them.
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Figure 28. Reliability diagram. Confidence refers to the output prediction of the network, while the

accuracy is computed by intervals.

5.2.3.6. Additional studies: study of the LR decay

We performed this study to check the influence of the BS and the starting LR jointly. The

results indicates that 0.001 is the optimal starting LR in our approach. Also, we achieve a better

performance when the LR decay is higher and BS = 64 seems to work best to our problem

Table 27. Ablation study for LR decay

BATCH STARTING DECAY PRECISION PRECISION
VALIDATION TRAINING
SIZE LR LR MEAN / BEST MEAN / BEST
64 0,001 20 75,82 /78,48 94,12 / 94,09
64 0,001 30 75,70/79,35 95,08/ 94,80
64 0,0001 20 50,37 /78,12 76,54 /51,42
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BATCH STARTING DECAY MIXUP DROPOUT WARMUP PREC. PREC. ADDITIONAL
SIZE LR LR (20 %) (0,001) VAL TRAIN DATA AUG.
100 0.01 20 yes yes yes 83.76 9566 -
100 0,01 20 yes Yes yes 88,56 93,38 Hue 0,05
100 0,01 20 yes yes yes 85,64 95,04 Rot45°
100 0.001 20 yes yes yes 84.85 90,16 -
100 0,001 20 yes yes yes 84,31 92,78 Hue 0,05
100 0,001 20 yes yes yes 81,44 88,72 Rot45°

64 0,0001 30 57,92/61,76 78,36 /78,73

128 0,001 20 74,68/ 76,40 91,55/91,16

128 0,001 30 75,75/ 78,86 93,62 /92,25

128 0,0001 20 49,70 /51,08 76,73 /75,78

128 0,0001 30 49,85 /51,52 77,56 176,52

256 0,001 20 73,56 / 75,95 87,12 /85,98

256 0,001 30 74,39/76,69 88,08 / 86,99

256 0,0001 20 50,25 /51,15 75,86 /75,84

256 0,0001 30 49,85/51,27 75,58/78,94

5.2.3.7. Additional studies: Hue and rotation data augmentation

Behind the commonly used data augmentation (i.e. random horizontal) we also

experimented with hue and rotation data augmentation.

Hue augmentation sdd a random hue jitter to images. Hue can be thought of as the ‘shade’ of
the colors in an image. Hue changing parameter is set to 0.05 in order to not to affect so much to
the colour of the vehicles. The rotation augmentation randomly rotates the image clockwise by a

given number of degrees from 0O to a given parameter, we used 45°.

Results on the table shows that these two techniques do not really impact in our approach.
This may be due to the fact that due to the nature of the dataset cars already appears in different

illumination condition (depending on the camera) and in different rotation angles.

Table 28. Ablation study for data augmentation
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Figure 29 Block scheme of the proposed DL-GSAC object detection system. The circles at the
output of the CNN represent the predictions of the grid of classifiers. Green circles correspond to
active classifiers. Red circles correspond to inactive classifiers. For clarity, inactive classifiers are
omitted from the image.

This work [95] continues the work in [96] in the development of a people detection system
for omnidirectional cameras. The main advantages of the detector design are two-fold: the
operation of the system with omnidirectional cameras allows to cover larger areas with a single
camera, and the point-based annotation of persons for the training stage (instead of bounding

boxes) alleviates the annotation requirements in the deployment of the system.

Specifically, the work in [95] in improves the original system, described in [97], adapting
the Grid of Spatially Aware Classifiers (GSAC) to an end-to-end deep learning architecture
(DL-GSAC). The inclusion of a CNN-based architecture for the descriptor and classifiers allows
to increase the generalization capability of the system, allowing to train a single detection model
for different scenarios. This overcomes the main limitation of the GSAC version described in
[97], based in HOG descriptors and SMV classifiers, which must be re-trained for every specific

camera setting. The block scheme of the implemented system is depicted in Figure 29.

Figure 30 Example of the process of creation of a multiple-people synthetic training sample. a) and
(b) show the original training images. Using a GMM background subtraction algorithm, a mask of
the person is created, (c) and (d). The inverse mask is used on one original image to remove the
corresponding region (e) and the extracted person is added to generate the final synthetic image (f).
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Additionally, to improve the performance of DL-GSAC has been improved including the
following features:

e Positive sample weighting to alleviate training class imbalance: One of the
inherent problems in the training process of one-stage object detectors is the
foreground-background class imbalance [98]. In the DL-GSAC architecture, the
number of images that are considered a positive sample for a given classifier is
consistently lower than negative samples, biasing the classifiers towards low scores.
To mitigate the effect of this imbalance, in each classifier, we weight the loss of
positive samples according to the ratio of negative samples with respect to each
positive for that classifier.

e Synthetic multiple-people data augmentation: In the PIROPO dataset [97], the
training data is composed by sequences of a single person walking through the
room, covering all possible locations. The work in [97] shows that the requirement
of such limited training data (plus the point-based annotations) supposes an
advantage in the annotation requirements for the deployment of the HOG+SVM-
GSAC system. However, when training DL-GSAC to cope with multiple scenarios,
the detection performance drops in images with multiple people. Thus, here we
explore whether this limitation can be overcome by creating additional synthetic
training samples that fuse multiple people in a single image, and thus not requiring
additional effort to collect or annotate new training data. An example of the creation

of this multiple-people training samples is depicted in Figure 30.
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Table 29 Comparative results between different GSAC architectures, HOG+SVM [97], Alexnet and
Resnet-18/50, without additional data augmentation and YOLOv3. Also, the table includes
performance results of DL-GSAC improved with multiple-people synthetic data augmentation.
Text in bold indicate the best value for comparable GSAC configurations. In the data augmentation
tests, green/red indicate a relevant improvement/decrease in the metric with respect to the
corresponding baseline (no data augmentation).

No augmentation Synth imas (2 imas)
HOG+5VM [10] | Alexnet | Resnetl8 | Resnet30 YOLOv3 Resnetl8 Resnet50
Precision 0.2234 0.7814 0.8726 0.7679 0.687 0.6548
omni_l1A Recall 0.6188 0.5951 0.6403 0.7185 0.643
F1-Score 0.3069 0.6578 0.7160 0.7070 0.664 0.7115
Precision 0.1987 0.6283 0.7853 0.6897 0.692 0.6113 0.5977
omni_2A Recall 0.6429 0.6411 0.7044 0.6655 0.654
F1-Score 0.2920 0.6063 0.7004 0.6382 0.672 0.6972 0.6578
Precision 0.1886 0.7201 0.8904 0.8266 0.843 0.5570 0.5459
ommni_3A Recall 0.5727 0.5364 0.4557 0.4994 0.788
F1-Score 0.2634 0.6049 0.5335 0.5931 0.814 0.5936
Precision 0.2847 0.6985 0.8117 0.7849 0.953 0.8092
omni_1B Recall 0.5986 0.6238 0.6702 0.6850 0.948
F1-Score 0.3796 0.6464 0.7016 0.7181 0.951
Precision 0.2238 0.7071 0.8400 0.7673 0.7938 0.7243 0.6698
avg. Recall 0.6082 0.5991 0.6177 0.6421 0.7583
F1-Score 0.3104 0.6289 0.6629 0.6641 0.7753

The main results of the system are presented in Table 29. The detector is evaluated using the
PIROPO dataset [97], using a single model trained with the training data of the four
omnidirectional cameras. In these results, we compare Precision-Recall performance of DL-
GSAC with the HOG+SVM-GSAC version of [97] and YOLOv3 [8]. For DL-GSAC, different
CNN backbone architectures have been evaluated (Alexnet, Resnet-18, Resnet-50).
Additionally, the efficiency of the synthetic multiple people data augmentation is evaluated for
the Resnet-18 and -50 DL-GSAC versions. The main conclusions of the experiments indicate
that the performance of DL-GSAC is clearly superior to HOG+SVM-GSAC and comparable to
state-of-the-art detectors (YOLOV3). Also, the inclusion of synthetic multiple-people training
samples improve the performance of DL-GSAC, specially regarding the Recall metric.
However, it also incurs in some cases in decrease in the Precision, which needs to be further

investigated.
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6. Conclusions

This current version of D3, recapitulates the current research outcomes from Workpackage
3, focusing on new proposals for Scene Recognition, Semantic Segmentation, Multiview
Matching and Cooperative Detection and Tracking, in scenarios were at least one of the
following aspects is covered: heterogeneous modalities, multiple cameras and mobile cameras.
Evaluation has been rigorous, over public datasets (including some created within the project),

and some of the approaches have been presented in international challenges.
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