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1. Introduction 

1.1. Motivation 

Work package 3 (WP3) aims at proposing new technologies for applications related to 

heterogeneous camera networks where camera mobility plays a key role. Such proposals will be 

performed on public datasets. If required, small scenarios will be recorded.  

This deliverable describes the work related with tasks T.3.1 Scene Recognition, T3.2 

Semantic Segmentation, T3.3 Multi-view matching and T.3.4 Cooperative detection and 

tracking 

1.2. Document structure 
 

This document contains the following chapters: 

• Chapter 1: Introduction to this document 

• Chapter 2: Scene Recognition 

• Chapter 3: Semantic Segmentation 

• Chapter 4: Multi-view matching 

• Chapter 5: Cooperative detection and tracking 

• Chapter 6: Conclusions 

 





    
 

D3.v2 Technologies for Mobile Camera Networks   3 

 

2. Scene Recognition 

2.1. Semantic-Aware Scene Recognition Approach [1] 

2.1.1. Design 

Scene recognition is currently one of the top-challenging research fields in computer vision. 

This may be due to the ambiguity between classes: images of several scene classes may share 

similar objects, which causes confusion among them. The problem is aggravated when images 

of a scene class are notably different. Convolutional Neural Networks (CNNs) have significantly 

boosted performance in scene recognition, albeit it is still far below from other recognition tasks 

(e.g., object or image recognition). In this paper, we describe a novel approach for scene 

recognition based on an end-to-end multi-modal CNN that combines image and context 

information by means of an attention module. Context information, in the shape of a semantic 

segmentation, is used to gate features extracted from the RGB image by leveraging on 

information encoded in the semantic representation: the set of scene objects and stuff, and their 

relative locations. This gating process reinforces the learning of indicative scene content and 

enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. 

Experimental results on four publicly available datasets show that the proposed approach 

outperforms every other state-of-the-art method while significantly reducing the number of 

network parameters.  

2.1.1. Experimental results 

The proposed solution is validated by an extensive comparison with the state-of-the art 

using four publicly available datasets described in [2]. The following Tables illustrate this 

comparison. A brief discussion is included for each dataset. See full details in [1]. 

Results on the ADE20K Dataset from Table 1 indicate the effectiveness of the proposed 

architecture when compared to the solely use of either the RGB features or the Semantic 

features. When using both RGB and Semantic features, increments of a 9.9% and a 29.80% in 

terms of Top@1 accuracy and Mean Class Accuracy are obtained whit respect to the RGB 

baseline. 

Results from Table 2 and Table 3 indicate that the proposed method outperforms every other 

scene recognition state-of-the-art algorithm. Specifically, the proposed algorithm using ResNet-
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50 as backbone (Ours*) outperforms SDO [4], an algorithm similar in spirit, in a 0.39% and a 

0.85% for MIT Indoor 67 [5] and SUN 397 [6] respectively. 

 

 

Table 1. Scene recognition results on ADE20K 

 

Table 2. State-of-the-art results on MIT Indoor 67 dataset. Methods using objects to drive scene 

recognition include: [13, 14], Semantic Branch, Ours and Ours*. 

 

Results from Table 4 compare the proposed algorithm with respect to state-of-the-art 

Convolutional Neural Networks on Places Dataset [7]. “Ours” obtains the best results from the 

table while maintaining relatively low complexity. Its performance improves those of the 
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deepest network, DenseNet-161, by a 0.73% in terms of Top@1 accuracy and it surpasses the 

most complex network, VGG-19, by a 2.29% reducing the number of parameters a 67.13%.  

 

Table 3. State-of-the-art results on SUN 397 dataset. Methods using objects to drive scene recognition 

include: [13, 14], Semantic Branch, Ours and Ours*. 
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Table 4. State-of-the-art results on Places-365 Dataset (%). (* stands for performance metrics reported in 

the dataset).
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Figure 1. Qualitative results. 

First and second column represent the RGB and semantic segmentation images from the 

ADE20K, the SUN 397 and the Places 365 validation sets. The third, fourth and fifth columns 

depict the Class Activation Map (CAM) obtained by using features extracted from: the RGB 

Branch used baseline (ResNet-18), the Semantic Branch and the proposed method (Ours). The 

CAM represents the image areas that produce a greater activation of the network. CAM images 

also indicate the ground-truth label and the Top 3 predictions. It can be observed how the 

proposed method changes the attention towards human-accountable concepts that can be 

indicative of the scene class, e.g., the microwave for the kitchen, the animals for the chicken 

farm or the mirror for the bathroom.  
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2.2. Egocentric Scene Recognition combining depth, 
color and semantic information [71] 

2.2.1. Design 

A system for RGB-D scene recognition is designed. We show that using depth maps can 

further improve the results, since the depth possesses additional cues, not very likely to be learnt 

from colour data. We define a two-stage learning architecture consisting of three branches—

colour, depth and semantic, fused in the end using attention mechanisms. Each branch is firstly 

maximized in terms of precision on its own. In this case, we show that the proper encoding is 

crucial for the depth branch and that HHA (Horizontal disparity, Height, Angle) representation 

leads to the best results. Moreover, we show that proper pre-training makes a great difference 

when fine-tuning to small datasets. After all branches have been optimized, weights inside them 

are frozen and different attention modules are trained and evaluated. In the end, using Hadamard 

combination proved to be the most prolific. Finally, we reached performances comparable to the 

current state of the art methods, resulting in a 60.0% Top@1 precision in the SUN RGB-D 

dataset. We also provide an extensive quantitative and qualitative evaluation of our model. 

2.2.2. Experimental results 

The proposed solution is validated by an extensive comparison with the state-of-the art 

using the SUN RGB-D dataset [72]. The following Figures and Tables illustrate this 

comparison. We here include results for the fusion mechanisms when the complete architecture 

(three branches is used). See full details, including ablation studies and experiments on the effect 

of the hyperparameters in [71]. 

Fusion 

Fusion between branches is achieved using different attention modules. As aforementioned, 

all three branches are firstly pretrained separately. Afterwards, their weights are frozen, and the 

classifiers are discarded from the branches. Two convolutional blocks are appended to each of 

the branches, in order to extract features relevant for fusion. In the end, fusion is realized as 

either an element-wise function or a feature concatenation.  

Extensive study on the impact of attention mechanisms on results is presented in Table 5. In 

order to better understand the results that attention mechanisms achieve, the results of two 

branch architectures are also presented. Fusing colour and semantic branches is carried out by 

using Gated RGB Hadamard Combination, as noted in [1], while fusion of colour and depth and 

depth and semantic information is done using Hadamard Combination. The results show that all 
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attention mechanisms manage to improve on the Top@1 results achieved by colour baseline. 

Yet, not all of them manage to improve on the baseline set by the Semantic-Aware Scene 

Parsing Network [1], combining RGB and semantic information. 

In the end, the best result was achieved when Hadamard Combination attention mechanism 

was used. Hadamard Combination mechanism computes element-wise product between the 

features extracted from all-three branches and feeds it further. Even though it managed to 

improve on Top@1 result, colour baseline remained having better scores on Top@5 and 

Top@10 metrics. 

 

Table 5. Comparison of proposed attention mechanisms in terms of accuracy on SUN 

RGB-D dataset 

Comparison against the State-of-the-art 

By obtaining 60.0% accuracy, our network surpassed the previous state of the art in the task of 

RGB-D Scene recognition on SUN RGB-D dataset. The comparison between the previous 

proposals and our results is shown in Table 6. 
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Table 6. Comparison of proposed architecture with the state of the art approachesin terms 

of accuracy on SUN RGB-D dataset 

Per-class improvement. 

The bar plot representing the per-class percentage Top@1 improvement obtained by 

incorporating additional branches to the colour baseline model is shown in Figure 2. It can be 

noticed that in 11 classes incorporating depth and semantic branches resulted in higher precision 

rate, while the results decreased for only 4 classes. The highest improvement occurs in corridor 

class. The explanation for this comes from the fact that corridors contain a very specific depth 

pattern. In contrary to the other rooms, that most often have square shape, corridors are usually 

very narrow and long. Hence, having an information about a long and continuous patch of in-

creasing depth helps the network to classify it as a corridor. Three examples in which using 

additional branches helped to produce better predictions in corridor images are presented in 

Figure 3. 

 

Figure 2. Per-class percentage Top@1 improvement by incorporating depth and semantic information. 
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Figure 3. Examples showing the improvement made in images of corridors by incorporating depth and 

semantic information 

 

2.3. Image classification through reduced training sets 
and “few-shot” learning [99] 

2.3.1. Design 

Conventional training of deep convolutional neural networks typically relies on the 

availability of millions of labelled images. Having access to such huge image repositories is not 

realistic for many applications in which reduced datasets are only available for training. “Few-

shot” learning aims at training deep neural networks with reduced training sets.  

This work has analysed both the “one-shot” (one training image per class) and “few-shot”  

(few training images per class) learning paradigms by implementing and evaluating the “relation 

network”, a deep neural network described in [100] (CVPR 2018). This network allows the 

supervised classification of images through reduced training sets. The network consists of two 

convolutional modules shown in the next figure for the “one-shot” instance and considering the 

particular example of 5 classes (5 ways): 
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The “embedding module” extracts a feature vector from an input image. In the previous 

example, it is applied to 6 images: the test image (bottom right) and the single training image 

(one shot) associated with each of the 5 classes (left column). The feature vector corresponding 

to each training image is concatenated with the feature vector obtained for the test image. The 

subsequent “relation module” generates a numerical score for each pair of feature vectors that 

amounts for the similarity between them. The test image is classified as belonging to the class 

with the largest similarity score. In “N-shot” learning, the feature vectors corresponding to the N 

training images per class are simply added and the result concatenated to the feature vector of 

the test image. 

2.3.2. Experimental results 

The aforementioned relation network has been implemented and tested on the particular 

problem of classifying images of both the public dataset miniImageNet used in [100] and of a 

proprietary dataset with outdoor images of buildings from the UAM campus. In both cases we 

have considered 5 classes (5 ways) and 20 images per class: either 1 or 5 images for training 

(sample images) and the others for testing (query images). For example, the figure below shows 

an example of the 20 images considered for one of the classes of the UAM dataset in the 5-shot 

experiment: the 5 images in the first row were used for training and the other 15 for testing: 
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The analyzed network has achieved results comparable to the ones reported in [100] for 

miniImageNet (around 45% classification accuracy for 1-shot and 60% for 5-shot). In turn, the 

classification accuracy for the scene dataset has been around 58% for 1-shot and 78% for 5-shot. 

Although these efficiencies are still far away from those yielded by complex state-of-the-art 

networks trained with millions of images, the results obtained especially for the 5-shot case 

prove that “few-shot” learning is a promising technology that can be advantageous for many 

applications. 

2.4. Scene recognition using deep neural networks 
trained with the PLACES database [101] 

2.4.1. Design 

Deep convolutional neural networks are extensively used in computer vision nowadays. 

Most well-known backbone network models are already implemented in public frameworks 

(e.g., PyTorch, TensorFlow, Keras) and pre-trained with millions of images belonging to public 

datasets (e.g., ImageNet, COCO, PLACES). PLACES365 is a dataset with millions of outdoor 

images belonging to 365 different scenes. It is specifically targeted to scene recognition rather 

than to object recognition.  

This work has evaluated the performance of two state-of-the-art networks (ResNet18 and 

ResNet50) pre-trained with PLACES365 when applied to the supervised classification of 

outdoor images belonging to a particular collection of scenes (classes) of interest. 
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In order to apply a pre-trained neural network to classifying images belonging to a set of 

classes different from the ones used for its original training, it is necessary to extend that 

network with a new block of fully connected layers that generates as many outputs as classes of 

interest, and then to retrain the extended network with the new training examples. This is known 

as “transfer learning.”  

2.4.2. Experimental results 

This work has evaluated the performance of public implementations of both the ResNet18 

and ResNet50 state-of-the-art networks pre-trained with PLACES365 when applied to the 

classification of a proprietary dataset of scene images belonging to the UAM campus.  

In particular, the ResNet18 and ResNet50 implementations provided in the PyTorch 

framework and pre-trained with the PLACES365 dataset were extended in order to classify 

scenes belonging to 10 different categories from the UAM campus, including outside views of 

different campus buildings and sport utilities. The extended networks were retrained with 25 

different training images per class (data augmentation was applied to those images) and 

evaluated with other 10 test images per class. Some examples of those images are shown below: 

 

 

The average classification accuracy obtained in those experiments was 85%. However, 

although the classification performance for 7 classes was above 80% (with 3 classes scoring 

more than 90%), there were 3 classes with relatively low accuracies of 60% and 70%. In most 

cases, the reason for that poor behaviour was the overall visual resemblance of images belonging 

to different classes. 

As a conclusion of this study, the use of properly pre-trained state-of-the-art networks is not 

sufficient for guaranteeing the proper recognition of specific scenes, even in a simple problem 

such as the one targeted in this work. Indeed, classification based on the analysis of images as a 

whole is not reliable enough and should also take into account details present in the images 



    
 

D3.v2 Technologies for Mobile Camera Networks   15 

 

(objects, parts of objects, …) for disambiguation purposes. This opens interesting new research 

lines in scene recognition. 

2.5. Unsupervised scene recognition using features 
extracted from pre-trained neural networks [102] 

2.5.1. Design 

Deep convolutional neural networks are extensively used in computer vision for supervised 

image classification and segmentation problems. However, the need for supervision implies the 

availability of huge datasets with millions of labelled training images. This is not feasible for 

many applications. As a consequence, the application of deep neural networks in an 

unsupervised manner that avoids the use of huge annotated datasets is a very active research 

area. 

This work has evaluated the performance of an unsupervised scene recognition technique 

proposed in [103]. This technique applies classical clustering to the features extracted by some 

internal layer of a deep convolutional neural network, such as AlexNet and VGG16, after 

feeding the network with a set of training images corresponding to the frames of a video 

sequence recorded while traversing a given path. The different clusters obtained in an 

unsupervised manner represent the different “places” in the video sequence. Each place/cluster 

is represented by the cluster centroid. The different places that have been automatically 

identified are then clustered by applying k-means. The obtained k classes are assumed to 

represent different scenes appearing in the video (e.g., indoor vs. outdoor). 

2.5.2. Experimental results 

The technique described in [103] has been implemented upon the AlexNet and VGG16 

network models provided in the PyTorch framework, both pre-trained with ImageNet. The two 

unsupervised clustering algorithms involved in the process (determination of centroids and 

clustering of centroids) were implemented in PyTorch with extensive use of GPU primitives.   

The technique has been evaluated on a proprietary dataset with 200 training images and 200 

test images belonging to two classes: indoor and outdoor. The indoor images correspond to 

different views of the rooms of a house, whereas the outdoor images were captured during a 

walk on foot over a city’s neighbourhood. Some examples of those images are shown below: 
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The features extracted from 8 different layers of the VGG16 and AlexNet pre-trained 

networks were used in the different experiments, considering both their convolutional and fully-

connected layers. The final goal was to classify the test images into the two scenes of interest 

(indoor or outdoor), having characterized those scenes in an unsupervised manner by applying 

the clustering techniques described above to the extracted features.  

The obtained results show that the best scene classification performance was obtained by 

clustering the output of the last fully-connected layers of both networks instead of the 

convolutional layers that were only tested in [103], as shown in the table below for VGG16: 

 

The aforementioned classification results for the two considered scenes imply that the output 

of fully-connected layers can be useful as high-level features that characterize the visual content 

of images in a far more compact way than features directly extracted from the convolutional 

layers. The results for VGG16 (max f-measure = 0.94) were slightly superior to those of 

AlexNet (max f-measure = 0.89). This is consistent with the higher complexity of VGG16. 
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3. Semantic Segmentation 

3.1. Semantic Driven Multi-Camera Pedestrian 
Detection Approach [3] 

3.1.1. Design 

Nowadays, pedestrian detection is one of the pivotal fields in computer vision, especially 

when performed over video surveillance scenarios. People detection methods are highly 

sensitive to occlusions among pedestrians, which dramatically degrades performance in crowded 

scenarios. The cutback in camera prices has allowed generalizing multi-camera set-ups, which 

can better confront occlusions by using different points of view to disambiguate detections. In 

this paper we present an approach to improve the performance of these multi-camera systems 

and to make them independent of the considered scenario, via an automatic understanding of the 

scene content. This semantic information, obtained from a semantic segmentation, is used 1) to 

automatically generate a common Area of Interest for all cameras, instead of the usual manual 

definition of this area; and 2) to improve the 2D detections of each camera via an optimization 

technique which maximizes coherence of every detection both in all 2D views and in the 3D 

world, obtaining best-fitted bounding boxes and a consensus height for every pedestrian. 

Experimental results on five publicly available datasets show that the proposed approach, which 

does not require any training stage, outperforms state-of-the-art multi-camera pedestrian 

detectors nonspecifically trained for these datasets, which demonstrates the expected semantic-

based robustness to different scenarios. 

3.1.2. Experimental results 

The proposed solution is validated by an extensive comparison with the state-of-the art 

using five publicly available datasets described in [2]. The following Tables illustrate this 

comparison. A brief discussion is included for each dataset. See full details in [3]. 

Results from Table 7 shows that the proposed method outperforms both used baselines 

(Faster-RCNN [8] and YOLOv3 [7]) when both stages (Pedestrian Semantic Filtering and 

Semantic-driven Back-projection) of the proposed method are used. Faster-RCNN, in terms of 

N-MODA is outperformed by an 8.45%, a 4.70%, a 3.52% and a 20.68% for EPFL Terrace, 

PETS 2009 S2L1, PETS 2009 CC and EPFL RLC respectively. On the other hand, YOLO is 

outperformed by a 11.84%, a 1.14%, and a 15.25% for EPFL Terrace, PETS 2009 S2L1 and 

EPFL RLC. 
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Table 7. Stage-wise performance of the proposed method when Faster-RCNNN [9] and YOLOv3 [8] are 

used as baselines. Indicators are Area Under the Curve (AUC), F-Score (F-S), N-MODA (N-A) and N-

MODP (N-P). Filt stands for "Pedestrian Semantic Filtering" stage and Fus & BP stands for "Fusion of 

Multi-Camera Detections (Fus) and Semantic-driven Back-projection (BP)" stages. 

 

Figure 4. Proposed method qualitative results on selected frames of the EPFL Terrace, PETS S2 L1, 

PETS CC and EPFL RLC datasets. 
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Qualitative results from Figure 4 represent bounding-boxes obtained by the proposed 

algorithm on first to third columns. Most-right column represents detections on the ground 

plane. (Faster-RCNN baseline is used for this qualitative example) 

 

Table 8. Comparison with respect to both baselines (Faster-RCNN [3] and YOLOv3 [14]), and multi-

camera state-of-the-art methods non based on deep-learning (POM [10] and MvBN + HAP [4]). 

Results from Table 8 compare the proposed approach, using Faster-RCNN and YOLOv3 as 

baselines, with respect to multi-camera pedestrian algorithms. It can be observed that the 

proposed method yields a higher recall, i.e. increases the number of correct detections by coping 

with occlusions and pedestrian detector errors, while keeping similar precision, i.e. without 

increasing the number of false positives. With respect to POM [10] and MvBN + HAP [4], the 

proposed method also obtains better results in terms of N-MODA which, precisely, measures 

detection accuracy along the whole sequences. 

 

Table 9. Wildtrack Dataset Comparison Results. All the stated methods (except both baselines) are multi-

camera deep-learning based algorithms. 
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Table 9 summarizes state-of-the-art results on Wildtrack Dataset [10]. "Trained" denotes 

that the algorithm has been explicitly trained on Wildtrack dataset, while "Non-Trained" denotes 

that the algorithm has not been trained on it. The proposed method, either with Faster-RCNN or 

YOLOv3 baseline, is also able to outperform all deep-learning approaches that have not been 

specifically adapted to the Wildtrack dataset. Our method improves 18.18% respect to Pre-

DeepMCD [11]—the second ranked—, which is an end-to-end deep learning architecture 

trained on the PETS dataset. 

3.2. Measuring the increase of diversity provided by the 
Unified Semantic Segmentation Dataset  

 

We have designed a python framework for the training of a semantic segmentation 

algorithm that jointly considers five of the principal semantic segmentation benchmarks publicly 

available. The idea is to leverage on different appearances of the defined semantic classes to 

enhance the generality and scalability of semantic segmentation. To this aim, we have collected 

and aligned the semantic classes of five semantic segmentation dataset into a Unified Semantic 

Segmentation Dataset (see [2]).  

We want to quantify the increase in diversity obtained in the shared classes by merging the 

datasets. Diversity refers to the variety that exists within a dataset, species, cultures, etc. We 

refer to the differences that exist within the same semantic class, that are directly related to the 

richness of the semantic class and the dominance of one dataset over another. This analysis is 

performed on those semantic classes that appear in more than one dataset of which the unified 

dataset is composed. The analysis is performed on the 57 semantic classes that fulfill this 

requirement.  

In order to quantify the added diversity, we leverage on an existing framework for analysing 

and comparing distributions [73]. Our hypothesis is that if we compare the distribution in terms 

of a given set of features for samples of a given semantic class of the Unified Dataset with that 

obtained by using only the samples of that class for one of the individual datasets that are 

merged, these distributions will be more different if the diversity is increased. 

3.2.1. Feature extraction 

For each image, we use the binary mask image resulting from selecting a given semantic 

class to isolate the RGB information for that specific class. Specifically, both images are 

introduced in a pretrained CNN and the activations at a particular layer are extracted. In this 
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case, activations at the eighth fully connected layer of an Alexnet network trained on ImageNet 

were extracted, yielding a 1x1000 feature vector for each combination of image and semantic 

class (see Figure 5).  

 

Figure 5. Feature extraction process 

3.2.1. Comparison of feature distributions. 

For a given semantic class, we randomly select 4000 samples (or the maximum available 

number of samples, if it is smaller than 4000) of that class from the Unified Dataset (two times) 

and one of the individual datasets that also contains that class. Therefore, three sets of samples 

are created, one for the individual dataset and two for the unified dataset. For these three sets of 

samples, we perform the feature extraction process described in the previous section. 

With the three sets of features (U1, U2 and V) we perform two Maximum Mean 

Discrepancy Tests [73]. First U1 and U2 are compared to ensure that the sampling is 

meaningful, which is tested by assessing that both sets shape similar distributions; hence 

resulting in an acceptance test. Then we perform a Maximum Mean Discrepancy Test on U1 and 

V, if the Unified dataset enlarges the diversity, this may result in a rejected test, as the 

distributions may be different.  

We repeat this process several times to reduce the effect of the random selection. In our 

preliminary results, the test is rejected 100% of the times for 55 out of the 57 evaluated classes.  
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3.3. Early experiments for semantic segmentation 
using synthetic data 

This section describes exploratory work focusing on the application of deep learning 

algorithms to semantic segmentation. To be more precise, the goal is to test different semantic 

segmentation algorithms with simulated videos instead of real ones.  

We have tested two popular approaches: ENET [74] and DeepLabV1[75]. As generator of 

synthetic data, we used the MSS simulator [76] to obtain several test sequences. Moreover, we 

have compared different models from the CityScapes dataset [77], Cambridge-Driving dataset  

[78] and Mapillary dataset [79].  

The following figure shows some example results for the experiments performed. Full 

details of the experiments can be found at the Undegraduate Thesis “Análisis automático de 

video simulado con sistemas multicámara basados en UNITY”. 

 

Figure 6. Semantic segmentation results for ENET using synthetic data 
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4. Multi-view matching 

4.1. People/Car re-identification approach 

4.1.1. Description of the algorithm 

The proposed re-identification system [15] is based on the combination of adapted deep 

learning feature embedding representations and a distance metric learning process.  

This section includes the summary of the techniques used to develop the proposed multi-

camera person/vehicle re-identification approach. In Figure 7 we have the flow diagram of the 

approach, first we obtain the features embedding representation using the query, train and test 

sets. Then, we learn the metric in order to get the projection matrix with the features map. The 

objective of using metric learning is to learn a feature space where features metrics that belongs 

to the same object are closer than those of different ones. Finally, we obtain the distances 

between each query and all the test set. 

 
Figure 7. Flow diagram of the vehicle ReID system approach. 
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4.1.2. Feature representation 

In order to extract the feature representations, we use the networks AlexNet [34], ResNet-18 

[35], ResNet-50 [35], ResNet-101 [35], Densenet-201 [36] and Inception-ResNet-v2 [37]. We 

choose these networks because of their relevance in scene and object classification.  

Feature extraction module models the appearance of each detected box via deep learning 

features by considering the different networks architectures, all of them pre-trained on the 

ImageNet database [18]. Since ImageNet covers 1000 classes and we need to adapt the model to 

our target, i.e. vehicles, we train some layers of the network while leaving others frozen. We 

have based on [38] to decide the frozen parts of the networks. We freeze before the CNN block3 

except for AlexNet that we freeze before the pool1 layer. All the remaining parts of the networks 

that are not frozen adapt their weights when we retrain on the vehicle images. 

The input images of the CNNs are resize to 227x227. The parameters used for the transfer 

learning of the non-frozen layers are a learning rate of 3e-4 and a batch size of 10. We have 

trained for 6 epochs and use Stochastic Gradient Descent with Momentum optimizer [39]. 

4.1.3. Metric learning 

Instead of using the feature embedding representation and the Euclidean distance to rank the 

test candidates, we improve the performance of the system introducing a supervision decision 

using the training data. In particular, the metric learning allows learning a feature space where 

the feature vectors of the same object ID are closer than the features from different objects. After 

the evaluation of the three most common metrics from the literature (XQDA [40], NFST [41] 

and KISSME[42]), we had chosen for the final evaluation the one with the best performance, the 

XQDA. 

4.2. Improvement proposals for the 2019 AI City 
Challenge 

All the improvements included are explained in detail in this section in order to obtain better 

results than those obtained with the baseline method in the 2019 AI City Challenge [47]. 

4.2.1. Feature combination at distance level 

To increase the performance of our system, we develop a decision combination at distance 

level. As we can see in Figure 8, we first extract the feature representations and learn the metric 

learning space. Then we compute the distances between the input query and all the images in the 
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gallery. At this point, the distances are normalized between 0 and 1. The final re-identification 

decision is based in the averaged distance. 

 
Figure 8. Feature combination at distance level. 

 

4.2.2. Vehicle trajectory information 

 

Each test track for the CityFlow-ReID dataset [47] contains multiple images of the same 

vehicle captured by one camera. According to the ranked distance between the query and the test 

gallery, we can assume that if there are some images of the same test track with small distances, 

i.e., high confidence of being the same vehicle, the rest of the test track should be also included 

in the ReID decision.  

Therefore, we sort the test tracks that appear in each query (top-100 matches) according to 

their first occurrence in the top-100 rank. We include progressively in ascending distance order, 

all the images of the sorted test tracks until we complete the output list of 100 matches. 

4.2.3. People re-identification results 

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility 

studies algorithms and findings”. This section describes the obtained people re-identification 
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results [17]. We compare the results using hand-crafted (manual) features and Deep-learning-

based features (CNN). Table 10 shows the people re-identification results obtained in dataset 

DuleMTMC4ReID [45] using Market1501 [44] as training dataset. Table 11 shows the people 

re-identification results obtained in dataset Market1501 [44] using DuleMTMC4ReID [45] as 

training dataset. Table 12 shows the people re-identification results obtained in dataset ViPER 

[43] using both DuleMTMC4ReID [45] and Market1501 [44] as training dataset. In general, the 

results show clearly that the re-training process improve significantly the CNN based features. 

However, the traditional features or hand-crafted have been tuned during many year in the state 

of the art of people re-identification and still gets better results. 

 

Table 10 People re-identification results obtained in dataset DuleMTMC4ReID [45]. 
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Table 11 People re-identification results obtained in dataset Market1501 [44]. 
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Table 12 People re-identification results obtained in dataset ViPER [43]. 

 

4.2.4. Car re-identification results 

The basic or the preliminary results were described in the deliverable “D2v1 Feasibility 

studies algorithms and findings”. This section describes the obtained car re-identification results 

[15][16] over the car re-identification dataset CityFlow-ReID [46]. We first compare the results 

using the three most common metrics from the literature (XQDA [29], NFST [30] and KISSME 

[31]) using the baseline algorithms in Table 13 and Table 14. The results show clearly a better 

performance using the metric XQDA. 

 

Table 13 GOG and WHOS comparison with XQDA, NFST and KLFDA.  

 

Table 14 Metric Learning comparison with baseline CNNs. In bold is the XQDA result with 

the best performance for all the networks. 

The, we present the obtained results after re-tanning the CNN architectures (XNet_VPU 

version) in Table 15. We realize that using the fine-tuned architectures we obtain more than the 

double of mAP. For instance, in case of DenseNet-201 (architecture trained in ImageNet) and 

DenseNet-201_VPU (architecture fine-tuned in CityFlow-ReID-subset) the mAP obtained is 

10.03% and 30.02% respectively. Also, the rank list is significantly higher in case of fine-tuned 

architectures. 
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Table 15 Results of the fine-tuned deep learning feature methods obtained in the CityFlow-

ReID-subset, all of them with the metric learning XQDA. In bold are the results with the best 

performance, in particular for DenseNet201_VPU and ResNet18_VPU. 

4.2.5. 2019 AI City Challenge re-identification results 

The results of the AI City Challenge have been published on May of 2019. There were three 

tracks with different issues to solve. Fist track was City-scale multi-camera vehicle tracking, 

second one was the City-scale multi-camera vehicle re-identification (our participation track) 

and the last one was Traffic anomaly detection. The number of participants to each track were 

22, 84 and 23 respectively, being our track the one with more participants. We published our 

work in [16]. 

The environment given by 2019 NVIDIA AI City Challenge has allowed to submit up 5 

results per day, with a total of 20 submissions. The results that have returned the server until the 

competition deadline were computed on a 50% subset of the test data. The online server also has 

provided a leader board with the top 3 results of all the competition and the own best result (in 

case not to be on the top-3). Once the deadline has been reached, the server shows all the 

submissions evaluated with all the test set and the entire leader board with all the participants' 

best result. 

In Table 16 we can see the results given at the end of the challenge of the different methods 

that we have developed. First of all, we have the features embedding representation with XQDA 

as metric learning and the CNNs AlexNet, ResNet18, ResNet50, ResNet101 and DenseNet201, 

given ResNet101 and DensNet201 the best results in mAP and in Rank-1, and Rank-100 for the 

case of DenseNet201. Then, we develop the distance combinations with the distance of 

ResNet101, ResNet50 and ResNet18 (DisCombResNet) and ResNet101, DenseNet201 and 

ResNet50 (DistCombRes-Dense-Net), obtaining similar ranks values and a higher mAP than 

with each network separately. 
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When we include the information of the tracks files provided in the CityFlow-ReID [47] 

explained in section 3.6.2, we improve the mAP with the inconvenient that we loss precision. 

DistCombResNet method1 ,DistCombResNet method2 ,DistCombResNet method3 are the first, 

second and third method respectively. The best result is given by the third method of the 

distance combination of ResNet101, DenseNet201 and ResNet50 (DistCombRes-Dense-Net 

method3) with a mAP value of 25.05%. 

We compare the results obtained with our experimental setup included in Table 15 with the 

ones obtained in the AI City server in Table 16. For instance, the value of AlexNet_VPU in our 

evaluation gives a mAP value of 12.66% while in the AI City evaluation is 7.04%. The same 

thing happens with the results of the other feature embedding representations. In our evaluation 

the results are around double than for the AI City server. That could be because, our evaluation 

is done in a reduce subset of the CityFlow-ReID dataset given, and furthermore, the challenge 

does not provide the entire data in order to make its own evaluation. 

The method proposed in this paper has finished the 60 out of the 84 participating teams on 

the challenge City-Scale Multi-Camera Vehicle Re-Identification. In order to compare our 

performance in the challenge with the other teams, we show in Table 17 the participants that are 

in the multiples of ten positions in the rank. We can see that the team in position 40th (TJU0432) 

that is in the middle of the ranked results of the challenge has a mAP score equal to 33.39%, 

which is only 8.34% more than our mAP result (25.05%). Best mAP result achieved in the 

challenge is equal to 85.54%. The teams with the best performance use as baseline the networks 

trained using triplet loss or cross entropy loss. They also include in the classification step the 

information of vehicle models and the vehicle orientation. 

 

Table 16 Results obtained in the online evaluation AI City Challenge [47] server for our 

different methods, all of them with the metric learning XQDA. 
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Table 17 Results of the leader board in [47]. 

4.3. Proposal for the 2020 AI City Challenge 

All the improvements included are explained in detail in this section in order to obtain better 

results than those obtained with the previous proposal in the 2019 AI City Challenge [47]. 

This section describes the details of the techniques used to develop the proposed multi-

camera vehicle ReID approach (see Figure 9). On the top of the figure we have the input of the 

system, on one hand it is image-based in case of feature with the different combination of losses 

and, on the other hand it is video-based for the keypoint and visibility estimation. The train step 

adjust the weights of each pre-trained CNN modules to the CityFlow-ReID dataset. Then, the 

test step infers the gallery and query images in order to obtain all the features. These features are 

assembled to have a unique feature representation for each image. After that, a query expansion 

and a temporal pooling for the gallery are applied in order to refine the feature representation 

and to obtain more accurate results. Once the distances between the gallery and the query 

images are calculated, the post-processing steps, re-ranking and the inclusion of trajectory 

information methods proposed in this work, are performed to improve the final ReID results. 
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Figure 9. Proposed system overview. 

4.3.1. Feature Extraction 

Image-based features extractors. This part of the sys-tem uses images as input and the 

architecture chosen to obtain the feature representation is DenseNet121 [36] pre-trained 

on ImageNet [66], based on Lv et al. [82]. To train this convolutional neural network, a 

cross-entropy loss and a triplet loss trained with batch-hard sampling method are used. 

According to the different variations on loss functions, it could be divided in the feature 

extractors: The first uses label smooth regularization (LSR) and triplet loss with hard 

margin, The second network training conditions also use LSR and triplet loss, but in this 

case it is trained using softmargin [83]. In the last module, the training loss variation 

combines LSR, triplet loss with hard margin and Jitter Augmen-tation.  

Video-based features extractor. The input to this part of the system are a set of images 

(bounding boxes), consecutive in time and location, of the same vehicle. The features extractor 

convolutional neural network is ResNet50 [35] pretrained on ImageNet [66] that obtains the 

features related to appearance of the identity. Following [80] and [81], the orientation of the 

vehicle is obtained locating the 36 vehicle keypoints that define 18 vehicle orientation surfaces. 
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The surfaces determine the visible areas of the vehicle, giving the orientation. This structure 

features are concatenated to the previous appearance features and a triplet loss hard margin and a 

cross-entropy functions are included in the training. 

4.3.2. Feature Ensemble 

Once the three features from image-based part and the appearance and structure feature form 

the video-based are extracted, in this module of the system they are concatenated in order to 

obtain a more robust representation feature. To perform this combination, the four different 

features must be normalized by L2 normalization. 

4.3.3. Query expansion and Temporal pooling 

In order to obtain a more discriminative feature representation, a query expansion [84][85] 

and a temporal pooling for gallery are applied. The proposed query expansion performs a sum-

aggregation and re-normalization of the features that belong to a specific query and the top-k 

gallery features that are retrieved as the sorted ReID list. The resulting feature will be the new 

query feature. Then, for the gallery features, it takes into account the trajectory information and 

performs an average pooling for the T−1 consecutive images. In this work, T is fixed to 6 (as 

proposed in [81]). 

4.3.4. Post-processing: Re-ranking and Trajectory information 
inclusion 

Re-ranking with k-reciprocal encoding. Following [86] we include a post processing step 

that exploits the hypothesis that if a gallery image is close in the retrieval result of a probe in the 

k-reciprocal nearest neighbors, its chance of being a true match is higher. For this task, the k-

reciprocal nearest neighbors features are encoded into a single feature which will be used for the 

re-ranking using Jaccard distance.  

Trajectory information. Already described in previous section 4.2.2. 

4.3.5. 2020 AI City Challenge re-identification results 

 All the experiments developed to analyze the performance of the proposed method are 

collected in this section. The two metrics used to evaluate the performance are mean Average 

Precision (mAP) [87] of the top-100 matches, that is the mean of all the queries’ average 

precision (area un-der the Precision-Recall curve), and the other metric is therank-100 hit rate 

(additionally, rank-1, rank-5, rank-10, and rank-30 hit rates are shown). 
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Table 18 shows the different proposed system configurations results obtained on the online 

evaluation server. Feature-1 is the feature extractor block that we can see in Figure 9, which 

applies Densenet121 network with LSR and triplet loss with hard margin. Feature-2 is 

Densenet121 with LSR and triplet loss with soft margin and, finally, Feature-3 is the same CNN 

architecture with jitter augmentation, LSR and triplet loss with hard margin. After assembling 

these three methods (Ensemble 1-2-3) the result (mAP= 0.3099) overcomes in 3.71% to 

previous result of the best feature. In the last step, the trajectory information is included using 

method 1 and method 2 described in3.4. Method 1 improves the previous ensemble result in a 

3.24%, whilst method 2 in an 11.27%. 

 

Table 18 Table of results obtained in Evaluation server for our different proposals. Bold 

indicates best performance per metric. 

Moreover, the module of appearance and structure feature extraction is included. As we can 

see in Table 18, it supposes an increase in terms of mAP with respect to the feature 1, 2 or 3 due 

to the introduction of the video-based feature. If we compare the ensemble of the three 

appearance features with the ensemble with the three features and the appearance and structure 

video-based one, this last one provides an improvement of 8.96%. As earlier noted, including 

method 2 of the trajectory information gives an improvement, in this case of 5.9%. Figure 10 

shows the visual result of two specific queries for Feature-1 compare with the assembling of the 

three features and fourth one (appearance and structure). In case of using only feature-1, it 

returns more false matches. Then, Figure 11 shows the ReID result of two different queries. The 

upper row for each query belongs to the results of ensemble the Features 1-2-3 and the 

appearance and structure feature, and the lower row corresponds to the same feature ensemble( 

at all are true positives, but when we move in the rank list, we can see that the trajectory 

information provides more true positives. In addition, Table 19 shows the results of the leader 

board in the AI City Challenge 2020, where the system proposed in this work achieved 

the30thrank on the list with a (mAP= 0.3626) using the feature ensemble method of the four 

features and the trajectory method 2. 
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Table 19 Table of track 2 leader board: City-Scale Multi-Camera Vehicle Re-Identification. 

Bold indicates this system approach. 

Figure 10. Example 1 of the visual results for the proposed ReID system. It shows two 

queries (in yellow), the upper rows of each query is the result for only use Feature-1, 

and lower rows is the result of ensemble the four-feature representation. Green blobs 

represent true matches and red blobs false matches. 
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Figure 11. Example 2 of the visual results for the proposed ReID system. It shows 

two queries (in yellow), the upper rows of each query is the result of ensemble the four 

feature representation, and lower rows is the result of Ensemble the four features 

representation and trajectory method 2. Green blobs represent true matches and red 

blobs false matches. 

4.4. Use of attributes for People/Car re-identification  
 

The focus of this project is the study of people and vehicle re-identification systems based 

on the combination of deep learning characteristics and traditional characteristics that describe 

the data used.  

The main idea is the combination of deep learning architectures for re-identification with the 

attributes extracted automatically with a pre-trained attributes classification. The proposal will 

be evaluate for both people and car re-identification. The corresponding dataset will be Market 

and Aicity, with twelve and six annotated attributes. See Figure 12 and Figure 13 for more 

details. 
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Figure 12. Market example with the twelve attributes. 

 

Figure 13. Aicity example with six attributes. 

The results combine the feature extracted with the already described re-identification 

baseline (see section 4.1) and the feature extracted from the trained attribute classifier. This 

combination has been tested for two deep network architectures ResNet [35] and Densenet [36] 

and different weighting between the deep learning feature and the attribute classifier. Table 20 

and Table 21 show example of obtained results for people and car re-identification respectively. 
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Table 20. Re-identification results after combining teh original deep learning features with 

the features extracted from the attribute classifier (“Metadatos”). In blue the original or baseline 

results, in green the best results. 

 

Table 21. Re-identification results after combining teh original deep learning features with 

the features extracted from the attribute classifier (“Metadatos”). In blue the original or baseline 

results, in green the best results. 

In general, although the general improvement is relatively small, the results show how the 

use of attributes always gets an improvement with a small weight of the attribute classifier. In 

the future, we will explore other strategies for combining both sources of information. 
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5. Cooperative detection and tracking 

5.1. Single-target tracking 

5.1.1. Description of the algorithm 

 

We present a detection-based multiple object tracker from Unmanned Aerial Vehicles 

(UAVs). This work is included in the European Conference on Computer Vision (ECCV) 2018 

proceedings[48].  

The proposed detection-based tracker models the targets by their visual appearance (via 

deep features) and their spatial location (via bounding boxes). It is composed of five main 

modules (see Figure 14), which are described hereunder, and receives as inputs the frame under 

consideration and the detections for each frame (i.e. bounding box, confidence and object class), 

provided by an external object detection algorithm. The output for each target is a track 

describing the sequential information over time. 

 

Figure 14. Block diagram of the proposed algorithm 

 

5.1.1.1. Features Extraction 

The feature extraction module describes the appearance of bounding boxes. Based on Faster-

RCNN [49], we compute features from the input frame with the ResNet-101[50]. deep residual 

network (pre-trained on the COCO dataset1) at layer . We use as region proposals the 

provided detections after confidence-based filtering. For each proposal we get a  

feature map by crop pooling [51], which becomes a  features vector by average pooling. 

 

 

 
1 https://github.com/ruotianluo/pytorch-faster-rcnn  
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5.1.1.2. Spatial Prediction 

The spatial prediction module infers each target location in following frames. We use an 

eight dimensional state-space for each target, containing its bounding box center position , 

aspect ratio , height , and respective velocities . We employ Kalman 

filtering [70] for predicting the state space. For updating the predictions, we use the associated 

filtered detections as observations in the model update module. State prediction is performed at 

the end of the current frame, being employed for data association in the next frame. 

5.1.1.3. Data Association 

The data association module matches the filtered detections with the trajectories of tracked 

targets by using the Hungarian algorithm[52]. We propose to perform association in two stages. 

First, we use appearance features to match detections and predicted targets. Similarity is 

computed as the cosine distance between the detection appearance descriptor and the target 

appearance model (i.e. the last  appearances of the target). Second, we consider the unmatched 

detections and predictions in the previous stage and we apply again the Hungarian algorithm 

using their spatial predicted descriptors (i.e. bounding boxes). The similarity between bounding 

boxes is determined on the basis of the Intersection over-Union criterion[53]. 

5.1.1.4. Track Management 

The track management module is in charge of operations such as track initialization and 

suppression. We employ two counters per track for handling initialization and suppression. One 

counter focuses on the number of consecutive frames where the track is kept. Another counter 

focuses on the number of consecutive frames where the track is lost. Track initialization is 

defined when unmatched detections exist and the first counter is above a threshold (min_life) 

whereas track suppression is performed when the second counter is above another threshold 

(max_unmatched). 

5.1.1.5. Model Update 

The model update module keeps a buffer of the last appearances for each track (i.e. features 

vector of detections associated to the track). 

5.1.2. Results 

We evaluated our approach (FRMOT) on the VisDrone 2018 Benchmark [54] held in ECCV 

2018. Table 22 shows the ranking of the challenge. Although our algorithm (FRMOT) ranks 4.0, 

due to the averaging of the ten metrics that are considered, we obtain better MOTA, IDF1, FAF, 
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MT, ML, FP, FN, IDS and FM than at least one or more algorithms. Figure 15 depicts a sample 

frame with the identifiers and bounding boxes of the tracked vehicles. 

Table 22. From [48], multi-object tracking results on the VisDrone-VDT2018 testing set. Rank is 

computed averaging ten metrics. Algorithms with ⁎ were submitted by the commitee 

 
 

 

Figure 15. Sample frame with tracking results of one the sequences of the VisDrone 2018 dataset. 

Numbers stand for the identifiers of the tracked vehicles.  

 

5.2. Multi-target tracking 

5.2.1. Description of the algorithm 

 

The proposed Multi Target Multi Camera (MTMC) tracking method was published in the 

proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW) 2019 [56] within the scope of CityFlow: A City-Scale Benchmark for 

Multi-Target MultiCamera Vehicle Tracking and Re-Identification [57]. 
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The proposed tracking approach is mainly composed of two main blocks, as shown in 

Figure 14, for analysing data in single and multiple cameras set-ups, respectively. The first block 

aims to detect and track vehicles from each independent camera. The second block performs 

tracking across multiple cameras by modelling appearance of bounding boxes detected for each 

camera; projects them into a common plane to group detections of the same object coming from 

different cameras; and, finally, associates trajectories over time to compute the final tracks. 

 

Figure 16. Block diagram of the proposed tracking method. 

5.2.1.1. Single-camera Tracking and Object Detection 

Multi Target Single Camera (MTSC) tracking is performed solving the tracking-by-

detection problem. The CityFlow benchmark provides detections as bounding boxes using three 

popular detectors: YOLOv3[58], SSD512 [59] and Faster R-CNN [49]. These three detectors 

make use of pre-trained models on the COCO benchmark [60] and the threshold value of  is 

applied to finally obtain the detections. For tracking based on these detections, two online 

approaches such as DeepSORT [61] and MOANA [62] are employed, and also TC [63] as an 

off-line method. The CityFlow benchmark provides results for nine MTSC tracking solutions by 

combining the above-mentioned detectors (three) and trackers (three).  

5.2.1.2. Feature Extraction 

Feature extraction module models the appearance of each detected box via deep learning 

features by considering the AlexNet [64] and ResNet-101 [65] architectures, both pretrained on 

the ImageNet database [66]. Since ImageNet covers 1000 classes and we need to adapt the 

model to our target, i.e. vehicles, we train some layers of the network while leaving others 

frozen. In detail, ResNet-101 is frozen before , and AlexNet is frozen before  

layer, following [67]. To fine-tune the network, we have employed 36,935 sample images of 333 

vehicle identities, extracted from the training set of ReID track 2 in the 2019 AI City Challenge. 

We also set the learning rate to  and batch size to . We train for 6 epochs and use 

Stochastic Gradient Descent with Momentum optimizer [68]. AlexNet architecture give us a 
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4096-dimensional feature vector at the output of  layer, while we obtain a 2048-dimensional 

vector at  layer in ResNet-101 network. 

5.2.1.3. Ground-Plane Clustering 

This module is in charge of associating detections of the same vehicle from different 

cameras obtained at the same time. At every frame, we project all detections of every camera to 

a common plane and apply hierarchical clustering to cluster such projected detections. In 

addition, we employ cluster validity indexes to determine which cluster structure is more 

suitable for our problem (i.e. find the optimal number of clusters). 

For ground-plane projection, we use homography matrices from 2D image pixel location to 

GPS coordinates. Therefore, we consider GPS coordinates plane. 

For clustering, we employ Hierarchical clustering based on two features: visual appearance 

and spatial distance in the ground-plane. Since two detections widely separated are highly 

unlikely to come from the same vehicle, we set a threshold such that the distance between 

vehicles’ detections further than 6 meters in GPS plane is set to a much higher value, i.e. 

impossible association. Similarly, as two detections coming from the same camera cannot be 

merged into the same cluster, the distance between them is also set to the same high value (100 

meters). By this way, two detections are more likely to fit the same vehicle if they are spatially 

close on the ground-plane and have similar visual appearance.  

Ideally, each cluster represents a vehicle and it can be composed of several detections from 

different cameras or composed of merely one detection. As the number of the number of clusters 

is unknown a priori, we have to determine empirically such optimal number. We therefore 

validate different clustering results using validation indexes. We use internal validation, more 

specifically, Dunn’s index [69], which aims to identify dense and well-separated clusters. By 

this way, all possible associations with different number of clusters are computed and we obtain 

an index value for each one. We obtain the optimal number of clusters, i.e. the number of 

vehicles, by taking the index with maximum derivative, i.e. the point of higher gradient. We 

empirically found that maximum derivative provides better information than maximum value. 

5.2.1.4. Spatio-Temporal Association 

The following task, consisting on linking clusters over time, is performed by the spatio-

temporal association module. Positions of each cluster along time form a track. Tracks motion is 

estimated via a constant-velocity Kalman Filter [70] and association between clusters and 
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predicted tracks is performed by the Hungarian Algorithm [52] using Euclidean distance 

between the spatial distances. As for track management, we initialize tracks for clusters (i.e. 

associated detections across cameras) that remain unassigned for 10 frames. Moreover, we also 

remove tracks which are not associated to any cluster for 20 consecutive frames. 

5.2.2. Initial results 

Leaderboard of CityFlow Challenge is shown in Table 23. This classification ranks 

identification precision (IDF1) on the test scenarios (S02 and S05). Both scenarios comprise a 

total of 23 cameras. S02 is formed by 4 confronted cameras in a road intersection. However, S05 

consists of 19 cameras, spread out over a wide extension, where maximum distance between two 

cameras is 2.5 kilometres. It is important to remark that cameras in S02 are completely 

overlapped between each other, while in S05 there is no overlap between most of them. Since 

our approach is completely dependent on projections, and therefore on overlap, predictably, it 

results in a low performance, as can be seen in Table 2.  

Table 23. Leaderboard of City-Scale Multi-Camera Vehicle Tracking, evaluated on test scenarios 

 
 

 

Figure 17 shows tracking results for scenario S01, formed by confronted cameras, in a 

similar way to S02.  
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Figure 18. Cameras 1-5 at frame 291. 

 

Figure 17. Sample visual results in train scenario S01, cameras 1-4. Tracked vehicles in yellow with their 

correspondent IDs. Same blue car is identified with the same ID, as well as the red car. However, an error 

in the single camera tracking leads to a tracking error in the red car in camera 2. 

 

 

5.2.3. Further extensions and experiments 

5.2.3.1. Window-based processing 

 

This extension affects the ground-plane clustering module. Due to noise in the video 

transmission while capturing the data of the CityFlow benchmark [88], some frames are skipped 

within some videos, so some cameras suffer from a few misalignments of synchronization along 

time. We can observe this misalignment in the figure below, where the red car appears at 

different position on the road depending on the camera view. 
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In order to deal with this bas synchronization, we designed and implement a new version of 

the Multi Target Multi Camera (MTMC) tracking algorithm, employing temporal window-based 

processing. The figure below depicts a diagram of the proposed window. Windows may have a 

variable size, as well as variable stride.  

 

Figure 19. This example considers a window of 49 frames. Only the trajectories in the reference frame 

are considered. 

The proposal considers only the trajectories that are present in the frame under analysis. As 

appearance descriptor we considered the average of all the descriptors in the trajectory. The 

similarity between appearance descriptors is computed as the Euclidean distance, as in the 

original approach. The spatial distance between trajectories is computed using Dynamic Time 

Warping [89]. In order to evaluate the approach individually, we assessed only the ground-plane 

clustering results, without performing the spatio-temporal association. The table shows 

Precision, Recall, F-Score, the number of vehicles in the ground-truth, the number of computed 

vehicles, True Positives, False Positives, False Negatives, the window size W and the 

appearance model used, i.e. ResNet101 as backbone with pre-trained weights on Imagenet. 

The following table indicates that the proposed algorithm with W = 1, 5 and 11 frames 

works in a very similar way, however increasing the window size decreases considerably the 

performance. From the data we have observed than the misalignment is such that at least a 

window of 40 frames is required to join misaligned trajectories. Also, it is important to remark 

that the bigger the window is, the higher is the computational cost and time. Having this and the 

results under consideration, we decided not to follow this line of work. In addition, window-

based processing would lose the causality of the approach. 
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Table 24. Clustering performance of the proposed approach varying the window size W 

 

 

5.2.3.2. Improvement of feature appearance: vehicle discriminator Siamese 
network 

 

We have design, trained and evaluated a siamese network architecture for discriminating 

pairs of given vehicles at different camera views. The figure below illustrates an overview of the 

block diagram. The network requires at the input a pair of images, in the form of bounding 

boxes, depicting two view of vehicles. Both bounding boxes feed a Convolutional Neural 

Network (CNN) in order to extract their N-dimensional feature descriptors. Both descriptors are 

concatenated to compute a 2N-dimensional embedding. Lastly, a classifier provides the 

likelihood of the pair of images depicting the same vehicle. 

 
 

 
 

 
 
 

 

 

 

 

Figure 20. Block diagram of the vehicle discriminator network 

 

The following figure shows samples of pairs and the class label associated to them. This 

figure also displays the viewpoint variation problem, the major challenge in MTMC vehicle 

tracking. Due the intrinsic geometry, distinct vehicles may appear quite similar from the same 

viewpoint, however the same vehicle from different viewpoints may be difficult to recognise.  It 

P R F GT PRED TP FP FN W MODEL 

21,78 57,43 31,11 20772 53433 11733 41700 41700 1 ResNet101 Imagenet 

21,59 57,05 30,85 20772 53433 11618 41815 41815 5 ResNet101 Imagenet 

21,79 57,46 31,12 20772 53433 11728 41705 41705 11 ResNet101 Imagenet 

19,85 53,01 28,45 20772 53433 10627 42806 42806 49 ResNet101 Imagenet 
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can be extremely hard, even for humans, to determine if two vehicles from different points of 

view depict the same car. 

 
 
 
 
 

 

 

 

 

Figure 21. Samples of pairs of vehicles and the corresponding class label: 0 (same vehicle) and 
1 (different vehicle) 

As the CNN backbone we employed ResNet-50 pretrained on the Imagenet dataset, and the 

feature embeddings are taken just after the last average pool layer and before the fully connected 

layer (fc_1 layer). Thus, N = 2048. The classifier is composed by a batch normalization, ReLU 

and a 4096-d fully connected layer. 

5.2.3.3. Regularization techniques 

 
New mixup training proposal: siamese mixup 

As a regularization technique, to deal with the overfitting problem during training, the 

original mixup strategy was proposed by [90]. In essence, mixup trains a neural network on 

combinations of pairs of examples and their labels. By doing so, mixup regularizes the neural 

network. To apply the mixup strategy in the training of our siamese network we propose the 

siamese mixup.  is the mixing weight. determines the vehicle ID. Figure 5 shows 

how we obtained two mixed images that will be the input of the discriminator network (see the 

following figure). 
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Figure 22. Example of siamese mixup strategy 

 

Figure 23. Block scheme of the siame mixup strategy 

 

When training the discriminator network, the loss criterion employed has to be modified in 

the following way 

 
 
being  and 

 

By doing so, all the possible pair combinations are proportionally considered in the loss 

function. We used the Cross Entropy loss as loss criterion. 

Dropout regularization 

We also included the dropout strategy [91]. During training, some number of layer outputs 

are randomly ignored or “dropped out.” Dropout has the effect of making the training process 

noisy, forcing nodes within a layer to probabilistically take on more or less responsibility for the 

inputs. It results in a network that is capable of better generalization and is less likely to overfit 

the training data. This was simply implemented in the classifier just by adding a Dropout layer 

after the ReLU layer and before the fully connected layer. 

 
 
 
 

https://www.linguee.es/ingles-espanol/traduccion/proportionaly.html
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Gradual warmup 

The intuition behind warmup training strategies [92] is to help the network to slowly adapt 

to the data and also, to allow adaptive optimizers (e.g. Adam, RMSProp, …) to correctly 

compute the gradients. Gradual warmup consists in starting with a small learning rate and 

gradually increase it by a constant until it reaches the initial desired learning rate, see Figure 7. 

 

 

Figure 24. Gradual warmup training 

Experiments 

For validating our proposal, we have considered the training set of the CityFlow benchmark 

(S01, S03 and S04 scenarios). It comprises 129 vehicle IDs and 29669 bounding boxes (230 in 

average per ID). We randomly split the data into the training subset (90%) and the validation 

subset (10%). Each input image containing a bounding box of a vehicle is adapted to the 

network by resizing it to 224 x 224 x 3 and the pixels are normalized by the mean and standard 

deviation of ImageNet dataset. 

We performed a validation methodology by entering pairs of vehicles to the network and 

computing the accuracy between the ground-truth and the network prediction. The ground-truth 

is computed by comparing the vehicle IDs (0 = same car, 1 = different car). Tables 2 and 3 

shows the impact of the different strategies. They include the training batch size, the starting 

learning rate and the number of epochs for decaying the learning rate. Finetuning denotes that 

also the last encoder of ResNet-50 is trained.  

Table 25. Ablation study with batch size = 100 
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Table 26. Ablation study with batch size = 200 

BATCH 

SIZE 

LR DECAY 

LR 

MIXUP 

Α 

FINETUNE  DROPOUT 

(20 %) 

WARMUP 

(0,001) 

PREC. 

VAL 

PREC. 

TRAIN 

200 0,01 15 yes -- -- -- 73,95 81,44 

200 0,01 15 yes yes -- -- 85,47 93,89 

200 0,01 15 yes yes yes -- 83,69 89,54 

200 0,01 15 yes yes -- yes 86,04 93,46 

200 0,01 15 yes yes yes yes 82,99 94,98 

The validation and trainig precision shown in the table are taken from the best epoch (i.e. 

when the validation loss reach a minimum peak), however these number may not be 

representative of the real behaviour of the model. For a better visualization Figure 8 shows the 

graphs of the training and validation loss during the training process. For instance, the fist 

graphic shows a peak performance of the validation loss in a very early epoch, however the loss 

afterwards, tends to increase. 

BATCH 

SIZE 

STARTING 

LR 

DECAY 

LR 

MIXUP  FINETUNE  DROPOUT 

(20 %) 

WARMUP 

(0,001) 

PREC. 

VAL 

PREC. 

TRAIN 

100 0,01 15 -- -- -- -- 78,34 87,06 

100 0,01 15 -- yes -- -- 89,47 94,69 

100 0,01 15 -- yes -- yes 88,71 97,19 

100 0,01 15 yes yes -- -- 85,49 94,82 

100 0,01 15 yes yes yes -- 84,06 93,50 

100 0,01 15 yes yes -- yes 88,72 94,59 

100 0,01 15 yes yes yes yes 83,88 95,44 

100 0,01 15 -- yes yes yes 86,81 95,44 
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Figure 25. Training and validation losses. Batchsize = 100, starting LR = 0.01 and LR decay = 15 

 

From the graphs we can observe that just fine-tuning the network with no additional 

regularization technique leads to a wrong training where the validation loss tends to increase, 

instead of decrease. Adding the dropout strategy helps a few to reduce the overfitting, however it 

does not have a great impact, since the validation loss still tends to increase. Including the mixup 

strategy makes really the difference in solving the overfitting problem. 

5.2.3.4. New data: Veri-776 Dataset 

We have also used VeRi-776 [93] dataset for improving the feature  extraction  model  by  

increasing  the  training  data. VeRi-776  is  one  of  the  largest  and  most  commondataset for 

vehicle re-identification in multi-camera scenarios. It comprises about 50,000 bounding boxes of 

776 vehi-cles captured by 20 cameras. 

The following figure shows a comparison between considering only the Cityflow dataset 

and both of them. In these trainings BS = 100. Mixup, dropout and warmup strategies are used. 

ResNet-50 is also finetuned. The starting LR = 0.01.  The graphics of the losses evolution show 

a correct training where both training and validation losses decreases and converge. The 

precision graphics show that the Cityflow training converge at around 80% of precision, while 

the combination of both datasets provides more than 90% of precision. Note also, that training 

with more data makes the curves to be smoother. 
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Figure 26. Training and validation loss and precision graphs 

In order to show the complexity of the problem under consideration the net figure shows 

examples of pairs of vehicle the trained network fails to discriminate. 

 

Figure 27. Samples of erroneous predictions 

Note that while the first two error seems to be due to the bad quality of the images (due to 

far vehicles), the last two seems to be conducted by the colour of the vehicle. 
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5.2.3.5. Calibration 

Confident calibration (the problem of predicting probability estimates representative of the 

true correctness likelihood) is important for classification models [94]. Classification networks 

must not only be accurate, but also should indicate when they are likely to be incorrect. In order 

to check whether our network is calibrated we computed the following reliability diagram.  To 

compute this diagram, we analysed all the given predictions by intervals and compute the real 

accuracy of them. 

 

 

 

 
  
 

 

 

 

 

 

 

 

 

 

Figure 28. Reliability diagram. Confidence refers to the output prediction of the network, while the 

accuracy is computed by intervals. 

 

5.2.3.6. Additional studies: study of the LR decay 

 

We performed this study to check the influence of the BS and the starting LR jointly. The 

results indicates that 0.001 is the optimal starting LR in our approach. Also, we achieve a better 

performance when the LR decay is higher and BS = 64 seems to work best to our problem  

Table 27. Ablation study for LR decay 

 
BATCH  

SIZE 

STARTING 

LR 

DECAY 

LR 

PRECISION  
VALIDATION 
MEAN / BEST 

PRECISION  
TRAINING 
MEAN / BEST 

64 0,001 20 75,82 / 78,48 94,12 / 94,09 

64 0,001 30 75,70 / 79,35 95,08 /  94,80 

64 0,0001 20 50,37 / 78,12  76,54 / 51,42 
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64 0,0001 30 57,92 / 61,76 78,36 / 78,73  

128 0,001 20 74,68 /  76,40 91,55 / 91,16 

128 0,001 30 75,75 /  78,86 93,62 / 92,25 

128 0,0001 20 49,70 / 51,08 76,73 / 75,78 

128 0,0001 30 49,85 / 51,52 77,56 / 76,52 

256 0,001 20 73,56 / 75,95 87,12 / 85,98 

256 0,001 30 74,39 / 76,69 88,08 /  86,99 

256 0,0001 20 50,25 / 51,15 75,86 / 75,84 

256 0,0001 30 49,85 / 51,27 75,58 / 78,94 

 

5.2.3.7. Additional studies: Hue and rotation data augmentation 

 

Behind the commonly used data augmentation (i.e. random horizontal) we also 

experimented with hue and rotation data augmentation.  

Hue augmentation sdd a random hue jitter to images. Hue can be thought of as the ‘shade’ of 

the colors in an image. Hue changing parameter is set to 0.05 in order to not to affect so much to 

the colour of the vehicles. The rotation augmentation randomly rotates the image clockwise by a 

given number of degrees from 0 to a given parameter, we used 45º.   

Results on the table shows that these two techniques do not really impact in our approach. 

This may be due to the fact that due to the nature of the dataset cars already appears in different 

illumination condition (depending on the camera) and in different rotation angles. 

Table 28. Ablation study for data augmentation 

BATCH  

SIZE 

STARTING 

LR 

DECAY 

LR 

MIXUP 

 

DROPOUT 

(20 %) 

WARMUP 

(0,001) 

PREC. 

 VAL 

PREC.  

TRAIN 

ADDITIONAL 

DATA AUG. 

100 0.01 20 yes yes yes 83.76 95,66 --- 

100 0,01 20 yes Yes yes 88,56 93,38 Hue 0,05 

100 0,01 20 yes yes yes 85,64 95,04 Rot 45º 

100 0.001 20 yes yes yes 84.85 90,16 --- 

100 0,001 20 yes yes yes  84,31 92,78 Hue 0,05 

100 0,001 20 yes yes yes 81,44 88,72 Rot 45º 
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5.3. People detection in omnidirectional cameras  

 

Figure 29 Block scheme of the proposed DL-GSAC object detection system. The circles at the 

output of the CNN represent the predictions of the grid of classifiers. Green circles correspond to 

active classifiers. Red circles correspond to inactive classifiers. For clarity, inactive classifiers are 

omitted from the image. 

This work [95] continues the work in [96] in the development of a people detection system 

for omnidirectional cameras. The main advantages of the detector design are two-fold: the 

operation of the system with omnidirectional cameras allows to cover larger areas with a single 

camera, and the point-based annotation of persons for the training stage (instead of bounding 

boxes) alleviates the annotation requirements in the deployment of the system. 

 Specifically, the work in [95] in improves the original system, described in [97], adapting 

the Grid of Spatially Aware Classifiers (GSAC) to an end-to-end deep learning architecture 

(DL-GSAC). The inclusion of a CNN-based architecture for the descriptor and classifiers allows 

to increase the generalization capability of the system, allowing to train a single detection model 

for different scenarios. This overcomes the main limitation of the GSAC version described in 

[97], based in HOG descriptors and SMV classifiers, which must be re-trained for every specific 

camera setting. The block scheme of the implemented system is depicted in Figure 29.  

 

 

Figure 30 Example of the process of creation of a multiple-people synthetic training sample. a) and 

(b) show the original training images. Using a GMM background subtraction algorithm, a mask of 

the person is created, (c) and (d). The inverse mask is used on one original image to remove the 

corresponding region (e) and the extracted person is added to generate the final synthetic image (f). 
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Additionally, to improve the performance of DL-GSAC has been improved including the 

following features:  

• Positive sample weighting to alleviate training class imbalance: One of the 

inherent problems in the training process of one-stage object detectors is the 

foreground-background class imbalance [98]. In the DL-GSAC architecture, the 

number of images that are considered a positive sample for a given classifier is 

consistently lower than negative samples, biasing the classifiers towards low scores. 

To mitigate the effect of this imbalance, in each classifier, we weight the loss of 

positive samples according to the ratio of negative samples with respect to each 

positive for that classifier. 

• Synthetic multiple-people data augmentation: In the PIROPO dataset [97], the 

training data is composed by sequences of a single person walking through the 

room, covering all possible locations.  The work in [97] shows that the requirement 

of such limited training data (plus the point-based annotations) supposes an 

advantage in the annotation requirements for the deployment of the HOG+SVM-

GSAC system. However, when training DL-GSAC to cope with multiple scenarios, 

the detection performance drops in images with multiple people. Thus, here we 

explore whether this limitation can be overcome by creating additional synthetic 

training samples that fuse multiple people in a single image, and thus not requiring 

additional effort to collect or annotate new training data. An example of the creation 

of this multiple-people training samples is depicted in Figure 30. 
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Table 29 Comparative results between different GSAC architectures, HOG+SVM [97], Alexnet and 

Resnet-18/50, without additional data augmentation and YOLOv3. Also, the table includes 

performance results of DL-GSAC improved with multiple-people synthetic data augmentation. 

Text in bold indicate the best value for comparable GSAC configurations. In the data augmentation 

tests, green/red indicate a relevant improvement/decrease in the metric with respect to the 

corresponding baseline (no data augmentation). 

 

The main results of the system are presented in Table 29. The detector is evaluated using the 

PIROPO dataset [97], using a single model trained with the training data of the four 

omnidirectional cameras. In these results, we compare Precision-Recall performance of DL-

GSAC with the HOG+SVM-GSAC version of [97] and YOLOv3 [8]. For DL-GSAC, different 

CNN backbone architectures have been evaluated (Alexnet, Resnet-18, Resnet-50). 

Additionally, the efficiency of the synthetic multiple people data augmentation is evaluated for 

the Resnet-18 and -50 DL-GSAC versions. The main conclusions of the experiments indicate 

that the performance of DL-GSAC is clearly superior to HOG+SVM-GSAC and comparable to 

state-of-the-art detectors (YOLOv3). Also, the inclusion of synthetic multiple-people training 

samples improve the performance of DL-GSAC, specially regarding the Recall metric. 

However, it also incurs in some cases in decrease in the Precision, which needs to be further 

investigated. 
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6. Conclusions 

This current version of D3, recapitulates the current research outcomes from Workpackage 

3, focusing on new proposals for Scene Recognition, Semantic Segmentation, Multiview 

Matching and Cooperative Detection and Tracking, in scenarios were at least one of the 

following aspects is covered: heterogeneous modalities, multiple cameras and mobile cameras. 

Evaluation has been rigorous, over public datasets (including some created within the project), 

and some of the approaches have been presented in international challenges. 
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